角的概念的推广教学设计 下载本文

内容发布更新时间 : 2025/1/3 19:11:58星期一 下面是文章的全部内容请认真阅读。

角的概念的推广-教学设计

哈尔滨市交界职业高中 杜银霞

课 题: 角的概念推广(第一课时) 教学目的:

1.掌握用“旋转”定义角的概念,理解并掌握“正角”“负角”“象限角”“终边相同的角”的含义。 2.掌握所有与α角终边相同的角(包括α角)的表示方法。 3.从“射线绕着其端点旋转而形成角”的过程,培养学生用运动变化观点审视事物,从而深刻理解推广后的角的概念。

教学重点:理解并掌握正角负角零角的定义,掌握终边相同的角的表示方法。 教学难点:终边相同的角的表示。 设计理念:

本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念,终边相同的角的表示方法。树立运动变化的观点,理解静是相对的,动是绝对的,并由此深刻理解推广后的角的概念。教学方法可以选为讨论法,通过实际问题,使角的推广变得更为必要,如螺丝扳手紧固螺丝、时针与分针、车轮的旋转等等,都能形成角的概念,给学生以直观的印象,形成正角、负角、零角的概念,突出角的概念的理解与掌握。通过具体问题,让学生从不同角度作答,理解终边相同的角的概念,并给以表示,从特殊到一般,归纳出终边相同的角的表示方法,达到突破难点之目的。 教学过程:

一、复习引入:

1.回忆:初中是如何定义角的?

从一个点出发引出的两条射线构成的几何图形。

这种概念的优点是形象、直观、容易理解,角的范围是0°≤α≤360°,但其仅从图形的形状来定义角,弊端在于“狭隘”。

2.生活中很多实例会不在范围0°≤α≤360°内。 如:体操运动员转体 ,跳水运动员向内、向外转体 经过1小时时针、分针、秒针转了多少度?

这些例子不仅不在范围 ,而且方向不同,有必要将角的概念推广到任意角,用运动的思想来研究角的概念。 二、讲解新课: 1.角的概念的推广 ⑴“旋转”形成角

一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角α.旋转开始时的射线OA叫做角α的始边,旋转终止的射线OB叫做角α的终边,射线的端点O叫做角α的顶点.

突出“旋转” 注意:“顶点”“始边”“终边” ⑵.“正角”与“负角”“零角”

我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,“正角”与“负角”是由旋转的方向决定的。

特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角. ⑶意义

用“旋转”定义角之后,角的范围大大地扩大了。 1° 角有正负之分 如:a=210° b=-150° g=660°

2° 角可以任意大

实例:体操动作:旋转2周(360°×2=720°) 3周(360°×3=1080°) 3° 还有零角 一条射线,没有旋转

角的概念推广以后,它包括任意大小的正角、负角和零角.要注意,正角和负角是表示具有相反意义的旋转量。 2.“象限角”

为了研究方便,我们往往在平面直角坐标系中来讨论角 角的顶点与坐标原点重合,角的始边与 轴的正半轴重合,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限,我们称其为界限角)

下面由学生自己分别举出终边在一、二、三、四象限的角以及界限角(各举两例) 例如:30°、390°、-330°是第一象限角,-195°、120°是第二象限角, 585°、1180°是第三象限角,300°、-60°是第四象限角。90°、0°、-180°都是界限角。 3.终边相同的角 ⑴观察:390°,-330°角,它们的终边都与30°角的终边相同 ⑵探究:终边相同的角都可以表示成一个0°到360°的角与 个周角的和: 390°=30°+ 360° -330°=30°-360° 30°=30°+0×360°

对于任意一个角,若其终边与 相同,那么它们之间都相差360°的整数倍。

⑶结论:所有与角 a终边相同的角连同a在内可以构成一个集合:{β|β=α+k·360° ,k∈Z}

(即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和。) ⑷注意以下四点: (1) k∈Z;

(2) a是任意角; (3) k·360°与a之间是“+”号, 如 -30°,应看成 +(-30°);

(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍. 三、讲解范例:

例1:写出与下列各角终边相同的角的集合,并指出它们是哪个象限的角 (1) 30° (2) 135° (3) 225° (4)300° 解:(1)与30 °终边相同的角的集合是A={β|β=30°+k·360° ,k∈Z} 因为30° 是第一象限角,所以集合A 中的角都是第一象限的角。 (2)与135° 终边相同的角的集合是A= {β|β=135°+k·360° ,k∈Z} 因为 135°是第二象限角,所以集合A 中的角都是第二象限的角。 (3)与225° 终边相同的角的集合是A={β|β=225°+k·360° ,k∈Z} 因为 225°是第三象限角,所以集合A 中的角都是第三象限的角。 (4)300°与 终边相同的角的集合是A={β|β=300°+k·360° ,k∈Z} 因为300° 是第四象限角,所以集合A 中的角都是第四象限的角。 四、课堂练习:

1.锐角是第几象限的角?第一象限的角是否都是锐角?小于90°的角是锐角吗? (答:锐角是第一象限角;第一象限角不一定是锐角;小于90°的角可能是零角或负角故它不一定是锐角)

2.已知角的顶点与坐标系原点重合,始边落在x轴的正半轴上,作出下列各角,并指出它们是哪个象限的角? (1)420°,(2)-75°,(3)855°,(4)-510°.

(答:(1)第一象限角,(2)第四象限角,(3)第二象限角,(4)第三象限角)

作图时应注意:顶点与坐标系原点重合,始边落在x轴的正半轴上(图略) 五、小结:

本节课我们学习了正角、负角和零角的概念,象限角的概念,要注意如果角的终边在坐标轴上,就认为这个角不属于任何象限.本节课重点是学习终边相同的角的表示法.严格区分“终边相同”和“角相等”;“界限角”“象限角”; “小于90°的角”“第一象限角”和“锐角”的不同意义.

六、课后作业:

1.下列命题中正确的是( )

A.第一象限的角一定不是负角 B.第二象限角一定是钝角

C.第四象限角一定是负角 D.若β=α+k·360°(k∈Z),则α与β终边相同 2.下列角中,与 终边相同的角是( ) A. B. C. D. 3.如果 ,那么角 是( )

A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 4.若角α与β终边相同,则一定有( ) A.α+β=180° B.α+β=0° C.α-β=k·360°,k∈Z D.α+β=k·360°,k∈Z 5.钟表经过4小时,时针与分针各转了 (填度).

6.在直角坐标系中,作出下列各角,并判断各为第几象限角(或界限角). (1)360°