挑战中考数学压轴题(_精选) 下载本文

内容发布更新时间 : 2025/1/24 11:41:26星期一 下面是文章的全部内容请认真阅读。

学习必备 欢迎下载

第一部分 函数图象中点的存在性问题

1.1 因动点产生的相似三角形问题

1

如图1,已知抛物线y?121b,与y轴x?(b?1)x?(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧)

444的正半轴交于点C.

(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);

(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;

(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

m图1

例2 如图1,已知抛物线的方程C1:y??1(x?2)(x?m) (m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左

侧.

(1)若抛物线C1过点M(2, 2),求实数m的值; (2)在(1)的条件下,求△BCE的面积;

(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标; (4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

图1

例3 直线y??x?1分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx

+c经过A、C、D三点.

(1) 写出点A、B、C、D的坐标;

(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;

(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

13图1

例4 Rt△ABC在直角坐标系内的位置如图1所示,反比例函数y?(k?0)在第一象限内的图象与BC边交于点D(4,m),与

AB边交于点E(2,n),△BDE的面积为2. (1)求m与n的数量关系;

(2)当tan∠A=

kx1时,求反比例函数的解析式和直线AB的表达式; 2(3)设直线AB与y轴交于点F,点P在射线FD上,在(2)的条件下,如果△AEO与△EFP 相似,求点P的坐标.

图1

学习必备 欢迎下载

例5 如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).

(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;

(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;

(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

图1 图2

例6 如图1,已知点A (-2,4) 和点B (1,0)都在抛物线y?mx2?2mx?n上.

(1)求m、n;

(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式; (3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.

图1

例7 如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.

(1)求此抛物线的解析式;

(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由;

(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.

,

图1

例8 如图1,△ABC中,AB=5,AC=3,cosA=

3.D为射线BA上的点(点D不与点B重合),作DE//BC交射线CA于点E.. 10(1) 若CE=x,BD=y,求y与x的函数关系式,并写出函数的定义域; (2) 当分别以线段BD,CE为直径的两圆相切时,求DE的长度;

(3) 当点D在AB边上时,BC边上是否存在点F,使△ABC与△DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由.

图1 备用图 备用图

学习必备 欢迎下载

1.2 因动点产生的等腰三角形

例1 如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

图1

例2如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.

(1)求点B的坐标;

(2)求经过A、O、B的抛物线的解析式;

(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.

例3 如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点

除外),直线PM交AB的延长线于点D.

(1)求点D的坐标(用含m的代数式表示); (2)当△APD是等腰三角形时,求m的值;

(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H所经过的路长(不必写解答过程).

图1 图2

例4 如图1,已知一次函数y=-x+7与正比例函数y?4x的图象交于点A,且与x轴交于点B.

3(1)求点A和点B的坐标;

(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.

①当t为何值时,以A、P、R为顶点的三角形的面积为8?

②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.