内容发布更新时间 : 2025/1/22 21:34:42星期一 下面是文章的全部内容请认真阅读。
小升初分班考试模拟试题及答案(二十)
1.著名的数学家斯蒂芬?巴纳赫于1945年8月31日去世,他在世时的某年的年龄恰好是该年份的算术平方根(该年的年份是他该年年龄的平方数).则他出生的年份是 _____ ,他去世时的年龄是 ______ . 【答案】1892年;53岁。
22
【解】 首先找出在小于1945,大于1845的完全平方数,有1936=44,1849=43,显然只有1936符合实际,所以斯蒂芬?巴纳赫在1936年为44岁.
那么他出生的年份为1936-44=1892年. 他去世的年龄为1945-1892=53岁.
【提示】要点是:确定范围,另外要注意的“潜台词”:年份与相应年龄对应,则有年份-年龄=出生年份。
2.某小学即将开运动会,一共有十项比赛,每位同学可以任报两项,那么要有 ___ 人报名参加运动会,才能保证有两名或两名以上的同学报名参加的比赛项目相同. 【答案】46
2C10【解】 十项比赛,每位同学可以任报两项,那么有=45种不同的报名方法.
那么,由抽屉原理知为 45+1=46人报名时满足题意.
3.
4.如图,ABCD是矩形,BC=6cm,AB=10cm,AC和BD是对角线,图中的阴影部分以CD为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π=3.14) 【答案】565.2立方厘米
【解】设三角形BOC以CD为轴旋转一周所得到的立体的体积是S,S等于高为10厘米,底面半径是6厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积。即:
1122
S=3×6×10×π-2×3×3×5×π=90π,
2S=180π=565.2(立方厘米)
【提示】S也可以看做一个高为5厘米,上、下底面半径是3、6厘米的圆台的体积减去一个高为5厘米,底面半径是3厘米的圆锥的体积。
5.如图,点B是线段AD的中点,由A,B,C,D四个点所构成的所有线段的长度均为整数,若这些线段的长度的积为10500,则线段AB的长度是 。
【答案】5
【解】由A,B,C,D四个点所构成的线段有:AB,AC,AD,BC,BD和CD,由于点B是线段AD的中点,可以设线段AB和BD的长是x,AD=2x,因此在乘积中一定有x3。
对10500做质因数分解:
23
10500=2×3×5×7,
3
所以,x=5,AB×BD×AD=5×2,AC×BC×CD=2×3×7, 所以,AC=7,BC=2,CD=3,AD=10.
6.设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要1分钟,注满第二个人的桶需要2分钟,…….如此下去,当只有两个水龙头时,巧妙安排这十个人打水,使他们总的费时时间最少.这时间等于_________分钟. 【答案】125分钟
【解】 不难得知应先安排所需时间较短的人打水.
不妨假设为:
第一个 第二个 第三个 第四个 第五个 第一个水龙头 A B C D E 第二个水龙头 F G H I J 显然计算总时间时,A、F计算了5次,B、G计算了4次,C、H计算了3次,D、I计算了2次,E、J计算了1次.
那么A、F为1、2,B、G为3、4,C、H为5、6,D、I为7、8,E、J为9、10. 所以有最短时间为(1+2)×5+(3+4)×4+(5+6)×3+(7+8)×2+(9+10)×1=125分钟. 评注:下面给出一排队方式:
第一个 第二个 第三个 第四个 第五个 第一个水龙头 1 3 5 7 9 第二个水龙头 2 4 6 8 10 【提示】想象一下,如果你去理发店理发,只需要一分钟,可能这时已有一位阿姨排在你的前面,她需要1小时。这时,你请她让你先理,她可能很轻松地答应你了。
可是,如果反过来,你排队在前,这位阿姨请你让她先理,你很难同意她的要求,而且大家都认为她的要求不合理,这是为什么呢?
可以看到,一个水龙头时的等待总时间算法是:
S=A+A+B+A+B+C+A+B+C+D+A+B+C+D+E=5A+4B+3C+2D+E 所以,要想使总时间S最小,则要A
两个水龙头可参见排队方法,但排队方法不唯一。有一个原则: (A+F)<(B+G)<(C+H)<(D+I)<(E+J)
6. 一辆汽车把货物从城市运往山区,往返共用了20小时,去时所用时间是回来的1.5倍,去时每小时比回来时慢12公里.这辆汽车往返共行驶了 _____ 公里. 【答案】576
【解】 记去时时间为“1.5”,那么回来的时间为“1”.
所以回来时间为20÷(1.5+1)=8小时,则去时时间为1.5×8=12小时. 根据反比关系,往返时间比为1.5︰1=3︰2,则往返速度为2:3, 按比例分配,知道去的速度为12÷(3-2)×2=24(千米) 所以往返路程为24×12×2=576(千米)。
7. 有70个数排成一排,除两头两个数外,每个数的3倍恰好等于它两边两个数之和.已知前两个数是0和1,则最后一个数除以6的余数是 ______ . 【答案】4
【解】 显然我们只关系除以6的余数,有0,1,3,2,3,1,0,5,3,,3,5,0,1,3,……
有从第1数开始,每12个数对于6的余数一循环, 因为70÷12=5……10,
所以第70个数除以6的余数为循环中的第10个数,即4. 【提示】找规律,原始数据的生成也是关键,细节决定成败。
8. 老师在黑板上写了一个自然数。第一个同学说:“这个数是2的倍数。”第二个同学说:“这个数是3的倍数。”第三个同学说:“这个数是4的倍数。”……第十四个同学说:“这个数是15的倍数。”最后,老师说:“在所有14个陈述中,只有两个连续的陈述是错误的。”老师写出的最小的自然数是 。 【答案】60060
【解】2,3,4,5,6,7的2倍是4,6,8,10,12,14,如果这个数不是2,3,4,5,6,7的倍数,那么这个数也不是4,6,8,10,12,14的倍数,错误的陈述不是连续的,与题意不符。所以这个数是2,3,4,5,6,7的倍数。由此推知,这个数也是(2×5=)10,(3×4=)12,(2×7)14,(3×5=)15的倍
数。在剩下的8,9,11,13中,只有8和9是连续的,所以这个数不是8和9的倍数。2,3,4,5,
2
6,7,10,11,12,,13,14,15的最小公倍数是2×3×5×7×11×13=60060。
9.小王和小李平时酷爱打牌,而且推理能力都很强。一天,他们和华教授围着桌子打 华教授给他们出了道推理题。
华教授从桌子上抽取了如下18张扑克牌:
红桃A,Q,4 黑桃J,8,4,2,7,3,5 草花K,Q,9,4,6,lO 方块A,9
华教授从这18张牌中挑出一张牌来,并把这张牌的点数告诉小王,把这张牌的花色告诉小李。然后,华教授问小王和小李,“你们能从已知的点数或花色中推断出这张牌是什么牌吗?
小王:“我不知道这张牌。”
小李:“我知道你不知道这张牌。” 小王:“现在我知道这张牌了。” 小李:“我也知道了。”