第五版大学物理上册答案(马文蔚) 下载本文

内容发布更新时间 : 2024/12/27 22:54:36星期一 下面是文章的全部内容请认真阅读。

量FN2 提供,而竖直分量FN1 则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向

解 设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有

FN1?mg?0 (1)

FN2v2?m (2)

Rv2?vcosθ?v2πR?2πR?2?h2 (3)

22FN?FN1?FN2 (4)

以式(3)代入式(2),得

FN2m4π2R2v24π2Rmv2??22 (5) 2222R4πR?h4πR?h将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为

22FN?FN1?FN22?4π2Rv2?2?mg???4π2R2?h2??

??与壁的夹角φ为

FN24π2Rv2 ?arctan?arctan222FN14πR?hg??讨论 表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.

2 -13 一质点沿x轴运动,其受力如图所示,设t =0 时,v0=5m·s-1 ,x0=2 m,质点质量m =1kg,试求该质点7s末的速度和位置坐标.

分析 首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.

解 由题图得

0?t?5s?2t, F?t???5s?t?7s?35?5t, 由牛顿定律可得两时间段质点的加速度分别为

a?2t, 0?t?5s a?35?5t, 5s?t?7s

对0 <t <5s 时间段,由a?dv得 dtvtv00?dv??adt

积分后得 v?5?t 再由v?2dx得 dt?积分后得x?2?5t?t

xx0dx??vdt

0t133将t =5s 代入,得v5=30 m·s-1 和x5 =68.7 m 对5s<t <7s 时间段,用同样方法有

?

vv0dv??a2dt

5st得 v?35t?2.5t?82.5t 再由 得

x =17.5t2 -0.83t3 -82.5t +147.87

将t =7s代入分别得v7=40 m·s-1 和 x7 =142 m

2 -14 一质量为10 kg 的质点在力F 的作用下沿x 轴作直线运动,已知F =120t +40,式中F 的单位为N,t 的单位的s.在t =0 时,质点位于x =5.0 m处,其速度v0=6.0 m·s-1 .求质点在任意时刻的速度和位置.

分析 这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t);由速度的定义v=dx /dt,用积分的方法可求出质点的位置.

解 因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有

2?xx5dx??vdt

5st120t?40?mdv dt依据质点运动的初始条件,即t0 =0 时v0 =6.0 m·s-1 ,运用分离变量法对上式积分,得

?离变量后积分,有

vv0dv???12.0t?4.0?dt

0tv=6.0+4.0t+6.0t2

又因v=dx /dt,并由质点运动的初始条件:t0 =0 时x0 =5.0 m,对上式分

?dx???6.0?4.0t?6.0t?dt

xt2x00x =5.0+6.0t+2.0t2 +2.0t3

2 -15 轻型飞机连同驾驶员总质量为1.0 ×103 kg.飞机以55.0 m·s-1 的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0 ×102 N·s-1 ,空气对飞机升力不计,求:(1) 10s后飞机的速率;(2) 飞机着陆后10s内滑行的距离.

分析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F 为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.

解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有

dv??αt dtvtαtdv???v0?0mdt

α2得 v?v0?t

2mF?ma?m因此,飞机着陆10s后的速率为

v =30 m·s-1

t?α2?dx?v?dt ??x0?0?02mt??x故飞机着陆后10s内所滑行的距离

s?x?x0?v0t?α3t?467m 6m2 -16 质量为m 的跳水运动员,从10.0 m 高台上由静止跳下落入水中.高台距水面距离为h.把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为bv2 ,其中b 为一常量.若以水面上一点为坐标原点O,竖直向下为Oy 轴,求:(1) 运动员在水中的速率v与y 的函数关系;(2) 如b /m =0.40m -1 ,跳水运动员在水中下沉多少距离才能使其速率v减少到落水速率v0 的1 /10? (假定跳水运动员在水中的浮力与所受的重力大小恰好相等)

分析 该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F 和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题

中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.

解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为

v0?2gh

运动员入水后,由牛顿定律得

P -Ff -F =ma

由题意P =F、Ff=bv2 ,而a =dv /dt =v (d v /dy),代 入上式后得

-bv2= mv (d v /dy)

考虑到初始条件y0 =0 时, v0?t2gh,对上式积分,有

vdv?m??dy? ??0??v0v?b?v?v0e?by/m?2ghe?by/m

(2) 将已知条件b/m =0.4 m -1 ,v =0.1v0 代入上式,则得

y??mvln?5.76m bv0 *2 -17 直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136 kg,长l=3.66 m.求当它的转速n=320 r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)