概率论与数理统计教程答案(徐建豪版). 下载本文

内容发布更新时间 : 2025/1/22 18:47:04星期一 下面是文章的全部内容请认真阅读。

习题1.1

1、写出下列随机试验的样本空间.

(1)生产产品直到有4件正品为正,记录生产产品的总件数. (2)在单位园中任取一点记录其坐标. (3)同时掷三颗骰子,记录出现的点数之和. 解:(1)??{4,5,6,7,8?} (2)??{(x.y)x2?y2?1} (3)??{3,4,5,6,7,8,9,10,?,18}

2、同时掷两颗骰子,x、y分别表示第一、二两颗骰子出现的点数,设事件A表示“两颗骰子出现点数之和为奇数”,B表示“点数之差为零”,C表示“点数之积不超过20”,用样本的集合表示事件B?A,BC,B?C.

解:B?A?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6)}

BC?{(1.1),(2.2),(3.3),(4.4)}

B?C?{(1.1),(2.2),(3.3),(4.4),(5.5),(6.6),(4.6),(6.4),(5.6),(6.5)}

3、设某人向靶子射击3次,用Ai表示“第i次射击击中靶子”(i?1,2,3),试用语言描述下列事件.

(1)A1?A2 (2)(A1?A2)A3 (3)A1A2?A2A2 解:(1)第1,2次都没有中靶

(2)第三次中靶且第1,2中至少有一次中靶 (3)第二次中靶

4.设某人向一把子射击三次,用Ai表示“第i次射击击中靶子”(i=1,2,3),使用符号及其运算的形式表示以下事件:

(1)“至少有一次击中靶子”可表示为 ; (2)“恰有一次击中靶子”可表示为 ; (3)“至少有两次击中靶子”可表示为 ; (4)“三次全部击中靶子”可表示为 ;

1

(5)“三次均未击中靶子”可表示为 ; (6)“只在最后一次击中靶子”可表示为 . 解:(1)A1?A2?A3; (2) A1A2A3?A1A2A3?A1A2A3; (3)A1A2?A1A3?A2A3; (4) A1A2A3; (5) A1A2A3

(6) A1A2A3 5.证明下列各题

(1)A?B?AB (2)A?B?(A?B)?(AB)?(B?A)

证明:(1)右边=A(??B)?A?AB=????A且??B??A?B=左边

(AB)?(AB)?(BA)(2)右边==???A或??B?A?B

??习题1.2

1.设

A、B、C

三事件,

P(A)?P(B)?P(C)?14,

1P(AC)?P(BC)?,P(AB)?0,求A、B、C至少有一个发生的概率.

8解:?P(AB)?0?P(ABC)?0

P(A?B?C).?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC)

=3?111?2?? 4822.已知p(A)?0.5 ,P(AB)?0.2 , P(B)?0.4,求 (1)P(AB) , (2)P(A?B), (3)P(A?B), (4)P(AB).

解:(1)

?A?B,?AB?A

?P(AB)?P(A)?0.1(2)

?A?B,?A?B?B

?P(A?B)?P(B)?0.53.设P(A)=0.2 P(A?B)=0.6 A.B互斥,求P(B). 解:?A,B互斥,P(A?B)?P(A)?P(B)

2

故P(B)?P(A?B)?P(A)?0.6?0.2?0.4 4.设A、B是两事件且P(A)=0.4,P(B)?0.8

(1)在什么条件下P(AB)取到最大值,最大值是多少? (2)在什么条件下P(AB)取到最小值,最小值是多少? 解:由加法公式P(AB)?P(A)?P(B)?P(A?B)=1.2?P(A?B)

(1)由于当A?B时A?B?B,P(A?B)达到最小, 即

P(A?B)?P(B)?0.8,则此时P(AB)取到最大值,最大值为0.4

(2)当P(A?B)达到最大, 即P(A?B)?P(?)?1,则此时P(AB)取到最小值,最小值为0.2 5.设

P(A)?P(B)?P(C)?求P(A?B?C).

1115,P(AB)?P(BC)?P(AC)?,P(A?B?C)?, 4816解:P(ABC)?1?P(ABC)?1?P(A?B?C)?1?151?, 1616P(A?B?C).?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC)

=3?1117 ?3???481616习题1.3

1.从一副扑克牌(52张)中任取3张(不重复)求取出的3张牌中至少有2

张花色相同的概率.

解:设事件A={3张中至少有2张花色相同} 则A={3张中花色各不相同}

3111C4C13C13C13P(A)?1?P(A)?1??0.602 3C522.50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱,每个部件用3只铆钉,若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率.

3

3

解法一 随机试验是从50只铆钉随机地取3个,共有C50种取法,而发生“某

3C31一个部件强度太弱”这一事件只有C这一种取法,其概率为3?,而10

C501960033个部件发生“强度太弱”这一事件是等可能的,故所求的概率为

p??pi?i?110101? 1960019603解法二 样本空间的样本点的总数为C50,而发生“一个部件强度太弱”这13C3一事件必须将3只强度太弱的铆钉同时取来,并都装在一个部件上,共有C10种情况,故发生“一个部件强度太弱”的概率为

13C10C31 p??31960C503.从1至9的9个整数中有放回地随机取3次,每次取一个数,求取出的3个数之积能被10整除的概率.

解法一 设A表示“取出的3个数之积能被10整除”,

A1表示“取出的3个数中含有数字5”, A2表示“取出的3个数中含有数字偶数”,

P(A)?P(A1A2)?1?P(A1A2)?1?P(A1?A2)?1?P(A1)?P(A2)?P(A1A2) ?8??5??4??1??????????1?0.786?0.214?9??9??9?解法二设Ak为“第k次取得数字5”,Bk为“第k次取得偶数”,k?1,2,3。 则A?(A1?A2?A3)(B1?B2?B3)

333A?(A1A2A3)?(B1B2B3)

P(A)?P(A1A2A3)?P(B1B2B3)?P(A1A2A3B1B2B3) 由于是有放回地取数,所以各次抽取结果相互独立,并且

P(A1)?P(A2)?P(A3)?85,P(B1)?P(B2)?P(B3)? 99 4

P(A1B1)?P(A2B2)?P(A3B3)?4 933?8??5??4?因此P?A??1?PA?1?[????????]?1?0.786?0.214

?9??9??9?4.袋内装有两个5分,三个2分,五个1分的硬币,任意取出5个,求总数超过1角的概率.

5解 共10个钱币,任取5个,基本事件的总数N?C10,有利的情况,即5

??3个钱币总数超过一角的情形可列举6种(1)5,5,2,2,2;(2)5,5,2,2,1;(3)5,5,2,1,1;(4)5,5,1,1,1;(5)5,2,2,2,1;(6)5,2,2,1,1.故包含的基本事件数为

2322121223131122N(A)?C2C3?C2C3C3?C2C3C5?C2C5?C2C3C5?C2C3C5?1?3?5?3?10?10?2?5?2?3?10?126

故所求概率为P?1261? 5C1025.设有N件产品,其中M件次品,今从中任取n件, (1)求其中恰有k(k?min(M,n))件次品的概率; (2)求其中至少有2件次品的概率.

kn?knn?1CMCNCN?M?M?MCN?M解:(1) (2)1- nnCNCN6.设n个朋友随机的围绕圆桌而坐,求下列事件的概率: (1)甲乙两人坐在一起,且乙在甲的左边; (2)甲、乙、丙三人坐在一起;

(3)如果n个人并列坐在一张长桌的一边,再求上述事件的概率. 解(1)n个朋友随机的围绕圆桌而坐,样本空间样本点总数为(n?1)! 而事件A为甲乙两人坐在一起,且乙在甲的左边,可将两人“捆绑”在一起,看成是“一个”人占“一个”座位,有利于事件A发生的样本点个数为(n?2)!

于是P(A)?(n?2)!1?

(n?1)!n?1(2)n个朋友随机的围绕圆桌而坐,样本空间样本点总数为(n?1)!,而事

5