苏州大学考研生化名词解释 下载本文

内容发布更新时间 : 2024/5/3 19:06:34星期一 下面是文章的全部内容请认真阅读。

DNA和RNA的主要不同 答:

分布不同(DNA主要在细胞核,RNA主要在细胞质),

含有的碱基不同(DNA特有的是胸腺嘧啶T,TNA特有是尿嘧啶U), 五碳糖不同(DNA是脱氧核糖,RNA是核糖), 结构不同(DNA是双螺旋,RNA是单链)

PS. 相同点:都含有磷酸和鸟嘌呤 腺嘌呤 胞嘧啶。组成是相似的,都有一分子的磷酸、一分子的五碳糖、一分子的碱基组成。

原核生物和真核生物的遗传物质是DNA,病毒的遗传物质是DNA或RNA 简要说明丙酮酸、乙酰COA、α-酮式二酸在生物体代谢中的作用 答:

1.丙酮酸是糖酵解的终产物,可转化为乙酰CoA之后进入柠檬酸循环和电子传递链进行有氧氧化,又可在无氧条件下生成乳酸或酒精。同时也是多种物质糖异生的中间产物。

2.乙酰CoA主要可进入柠檬酸循环和电子传递链进行有氧氧化,另外还可以作为脂肪酸、类固醇的合成前体,积累过多时会转化为酮体,还能通过乙醛酸途径进入柠檬酸循环。另外在每一轮脂肪酸β氧化中是以乙酰CoA形式脱掉两个碳原子单元。

3.α-酮戊二酸是柠檬酸循环的中间产物,还能合成赖氨酸和谷氨酸。

简述测定蛋白质的分子量的方法

蛋白质是含氮的有机化合物。蛋白质与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,蛋白质含量。含氮量*6.25=蛋白含量 糖代谢和脂代谢是通过那些反应联系起来的?

答:(1)糖酵解过程中产生的磷酸二羟丙酮可转变为磷酸甘油,可作为脂肪合成中甘油的原料。 (2)有氧氧化过程中产生的乙酰CoA 是脂肪酸和酮体的合成原料。 (3)脂肪酸分解产生的乙酰CoA 最终进入三羧酸循环氧化。 (4)酮体氧化产生的乙酰CoA 最终进入三羧酸循环氧化。

(5)甘油经磷酸甘油激酶作用后,转变为磷酸二羟丙酮进入糖代谢。

血糖的来源与去路 答:

1.血糖来源

(1)糖类消化吸收:食物中的糖类消化吸收入血,这是血糖最主要的来源。 (2)肝糖原分解:短期饥饿后,肝中储存的糖原分解成葡萄糖进入血液,

(3)糖异生作用:较长时间饥饿后,氨基酸、甘油等非糖物质在肝内合成葡萄糖。

(4)其他单糖的转化。 2.血糖去路

(1)氧化分解:葡萄糖在组织细胞中通过有氧氧化和无氧酵解产生ATP,为细胞代谢供给能量,此为血糖的主要去路。

(2)合成糖原:进食后,肝和肌肉等组织将葡萄糖合成糖原以储存。

(3)转化成非糖物质:转化为甘油、脂肪酸以合成脂肪;转化为氨基酸以合成蛋白质。 (4)转变成其他糖或糖衍生物,如核糖、脱氧核糖、氨基多糖等。

(5)血糖浓度高于肾阈(8.9~9.9mmol/L,160~180mg/dl)时可随尿排出一部分 DNA的二级结构

答:

1.两条多核苷酸链以相同的旋转绕同一个公共轴形成右手双螺旋,螺旋的直径2.0nm 2.两条多核苷酸链是反向平行的,一条5’-3’,另一条3’-5’

3.两条多核苷酸链的糖-磷酸骨架位于双螺旋外侧,碱基平面位于链的内侧 4相邻碱基对之间的轴向距离为0.34nm,每个螺旋的轴距为3.4nm Ps. RNA的二级结构:

简述tRNA 二级结构的组成特点及其每一部分的功能。 答:tRNA 的二级结构为三叶草结构。其结构特征为:

(1)tRNA 的二级结构由四臂、四环组成。已配对的片断称为臂,未配对的片断称为环。 (2)叶柄是氨基酸臂。其上含有CCA-OH3’,此结构是接受氨基酸的位置。

(3)氨基酸臂对面是反密码子环。在它的中部含有三个相邻碱基组成的反密码子,可与mRNA 上的密码子相互识别。

(4)左环是二氢尿嘧啶环(D 环),它与氨基酰-tRNA 合成酶的结合有关。 (5)右环是假尿嘧啶环(TψC 环),它与核糖体的结合有关。

(6)在反密码子与假尿嘧啶环之间的是可变环,它的大小决定着tRNA 分子大小。

蛋白质的二级结构

α-螺旋(α-helix):蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基氧与多肽链C端方向的第4个残基(第n+4个)的酰胺氮形成氢键。在典型的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm。 螺旋的半径为0.23nm

β-折叠(β-sheet)

是蛋白质中的常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链或相邻肽链的另一个酰胺氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(走向都是由N到C方向);或者是反平行排列(肽链反向排列) β-转角(β-turn)

多肽链中常见的二级结构,连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个氨基酸残基以上的转角又常称之环(loops)。常见的转角含有4个氨基酸残基,有两种类型。转角I的特点是:第1个氨基酸残基羰基氧与第4个残基的酰胺氮之间形成氢键;转角II的第3个残基往往是甘氨酸。这两种转角中的第2个残基大都是脯氨酸。

怎么证明酶是蛋白质? 答:

(1)酶能被酸、碱及蛋白酶水解,水解的最终产物都是氨基酸,证明酶是由氨基酸组成的。 (2)酶具有蛋白质所具有的颜色反应,如双缩脲反应、茚三酮反应、米伦反应、乙醛酸反应。 (3)一切能使蛋白质变性的因素,如热、酸碱、紫外线等,同样可以使酶变性失活。 (4)酶同样具有蛋白质所具有的大分子性质,如不能通过半透膜、可以电泳等。

(5)酶同其他蛋白质一样是两性电解质,并有一定的等电点。总之,酶是由氨基酸组成的,与其他已知的蛋白质有着相同的理化性质,所以酶的化学本质是蛋白质

在体内ATP 有哪些生理作用?

答:ATP 在体内有许多重要的生理作用:

(1)是机体能量的暂时贮存形式:在生物氧化中,ADP 能将呼吸链上电子传递过程中所释放的电化学能以磷酸化生成ATP 的方式贮存起来,因此ATP 是生物氧化中能量的暂时贮存形式。

(2)是机体其它能量形式的来源:ATP 分子内所含有的高能键可转化成其它能量形式,以维持机体的正常生理机能,例如可转化成机械能、生物电能、热能、渗透能、化学合成能等。体内某些合成反应不一定都直接利用ATP 供能,而以其他三磷酸核苷作为能量的直接来源。如糖原合成需UTP 供能;磷脂合成需CTP 供能;蛋白质合成需GTP 供能。这些三磷酸核苷分子中的高能磷酸键并不是在生物氧化过程中直接生成的,而是来源于ATP。

(3)可生成cAMP 参与激素作用:ATP 在细胞膜上的腺苷酸环化酶催化下,可生成cAMP,作为许多肽类激素在细胞内体现生理效应的第二信使。

为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共通路? 答:(1)三羧酸循环是乙酰CoA 最终氧化生成CO2 和H2O 的途径。 (2)糖代谢产生的碳骨架最终进入三羧酸循环氧化。

(3)脂肪分解产生的甘油可通过有氧氧化进入三羧酸循环氧化,脂肪酸经β-氧化产生乙酰CoA 可进入三羧酸循环氧化。

(4)蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨后合成必需氨基酸。所以,三羧酸循环是三大物质代谢共同通路。

下列试剂和酶常用于蛋白质化学的研究中:

CNBr 异硫氰酸苯酯 丹黄酰氯 脲 6mol/LHCl β-巯基乙醇 水合茚三酮 过甲酸 胰蛋白酶 胰凝乳蛋白酶。其中哪一个最适合完成以下各项任务? (a)测定小肽的氨基酸序列。 (b)鉴定肽的氨基末端残基。

(c)不含二硫键的蛋白质的可逆变性。若有二硫键存在时还需加什么试剂? (d)在芳香族氨基酸残基羧基侧水解肽键。 (e)在蛋氨酸残基羧基侧水解肽键。 (f)在赖氨酸和精氨酸残基侧水解肽键。

答:(a)异硫氰酸苯酯。(b)丹黄酰氯。(c)脲;β-巯基乙醇还原二硫键。 (d)胰凝乳蛋白酶。(e)CNBr。 (f)胰蛋白酶

体内糖代谢特点及生理功能 答:

酶作为生物催化剂和一般催化剂相比的异同? 答:

如何分离RNA、DNA(分子量相同) 答: