汽车制动系统的结构设计 下载本文

内容发布更新时间 : 2024/5/25 0:56:12星期一 下面是文章的全部内容请认真阅读。

汽车设计课程设计课题名称:汽车制动系统的结构设计与计算

第一章:制动器结构型式即选择

一、汽车已知参数:

汽车轴距(mm):3800 车轮滚动半径(mm):407.5 汽车空载时的总质量(kg):3330 汽车满载时的总质量(kg)6330

空载时,前轴负荷G=mg=12348.24N 后轴负荷为38624.52N 满载时,前轴负荷G=mg=9963.53N 后轴负荷为43157.62N 空载时质心高度为750mm 满载时为930mm

质心距离前轴距离空载时为2.36m 满载时为2.62m

质心距离后轴距离满载时为1.44m 满载时为1.18m 二、鼓式制动器工作原理

鼓式制动器的工作原理与盘式制动器的工作原理基本相同: 制动蹄压住旋转表面。 这个表面被称作鼓。

许多车的后车轮上装有鼓式制动器,而前车轮上装有盘式制动器。 鼓式制动器具有的元件比盘式制动器的多,而且维修难度更大,但是鼓式制动器的制造成本低,并且易于与紧急制动系统结合。

我们将了解鼓式制动器的工作原理、检查紧急制动器的安装情况并找出鼓式制动器所需的维修类别。

我们将鼓式制动器进行分解,并分别说明各个元件的作用。

图1 鼓式制动器的各个元件

与盘式制动器一样,鼓式制动器也带有两个制动蹄和一个活塞。 但是鼓式制动器还带有一个调节器机构、一个紧急制动机构和大量弹簧。

图2仅显示了提供制动力的元件。

图2. 运行中的鼓式制动器

当您踩下制动踏板时,活塞会推动制动蹄靠紧鼓。 这一点很容易理解,但是为什么需要这些弹簧呢?

这就是鼓式制动器比较复杂的地方。 许多鼓式制动器都是自作用的。 图5中显示,当制动蹄与鼓发生接触时,会出现某种楔入动作,其效果是借助更大的制动力将制动蹄压入鼓中。

楔入动作提供的额外制动力,可让鼓式制动器使用比盘式制动器所用的更小的活塞。 但是,由于存在楔入动作,在松开制动器时,必须使制动蹄脱离鼓。 这就是需要一些弹簧的原因。 其他弹簧有助于将制动蹄固定到位,并在调节臂驱动之后使它返回。

为了让鼓式制动器正常工作,制动蹄必须与鼓靠近,但又不能接触鼓。如果制动蹄与鼓相隔太远(例如,由于制动蹄已磨损),那么活塞需要更多的制动液才能完成这段距离的行程,并且当您使用制动器时,制动踏板会下沉得更靠近地板。 这就是大多数鼓式制动器都带有一个自动调节器的原因。

当衬块磨损时,制动蹄和鼓之间将产生更多的空间。汽车在倒车过程中停止时,会推动制动蹄,使它与鼓靠紧。 当间隙变得足够大时,调节杆会摇动足够的幅度,使调节器齿轮前进一个齿。 调节器上带有像螺栓一样的螺纹,因此它可以在转动时松开一点,并延伸以填充间隙。 每当制动蹄磨损一点时,调节器就会再前进一点,因 此它总是使制动蹄与鼓保持靠近。

一些汽车的调节器在使用紧急制动器时会启动。 如果紧急制动器有很长一段时间没有使用了,则调节器可能无法再进行调整。 因此,如果您的汽车装有这类调节器,一周应至少使用紧急制动器一次。

汽车上的紧急制动器必须使用主制动系统之外的动力源来启动。 鼓式制动器的设计允许简单的线缆启动机构。

鼓式制动器最常见的维修是更换制动蹄。 一些鼓式制动器的背面提供了一个检查孔,可以通过这个孔查看制动蹄上还剩下多少材料。 当摩擦材料已磨损到铆钉只剩下0.8毫米