X62W万能铣床电气控制系统的PLC改造 下载本文

内容发布更新时间 : 2024/10/1 15:39:52星期一 下面是文章的全部内容请认真阅读。

Manipulator is now used as a industrial robots in use, the control objectives often appear often in industrial automation. Industrial automation technology has gradually matured, as mature a technology line has been rapid development in industrial automation as a separate subject. Manipulator application began to filter into welding, logistics, mechanical processing, and other industries. Especially at high or very low temperatures, full of poisonous gases, high radiation case, robot in similar circumstances showed great use also brings great convenience to the staff. Precisely because of this robot to get people's attention began to be a high degree of development. Labor rates, working conditions, labor intensive aspects of promoting development. Both at home and abroad to develop the PLC (programmable logic controller) is in various special circumstances and under special conditions set for mechanical devices. Now turned on the development of the microelectronics automatic controltechnology and the rapid development of the trains, the success of PLC hardware software and simulation control win big and successful development, now continues to develop as a factory automation standards. Because robots are good development of the technology makes a good optimization of productive capital, and robot shows this unique advantages, such as: has good compatibility, wide availability, hardware is complete, and programming that can be mastered in a short time, so in the context of industrial PLC applications became ubiquitous. Manipulator in many developed country agriculture and industry has been applied, such as the use of mechanical harvesting large areas of farmland, repeated operations on the high-speed line that uses a robotic arm, and so on. Today, the high level of automation combined with restrictions on the manipulator development level is slightly lower than the international. The design is mainly arm welding machine by PLC Automation control. This of design let designers on in school by learn of has a must of consolidation, understand has some usually didn't opportunities awareness in world range within some leading level of knowledge has has must awareness, hope designers can in yihou of design in the can success of using in this design in the proceeds of experience 1.2 manipulator in both at home and abroad of research profile automation mechanical arm research began Yu 20th century medium-term, after years with with computer and automation technology of development, Makes mechanical arm on the Grand stage of industrial automation and shine, gradually became an industrial evaluation standards, and its importance can be seen. Now original robotic arm spent most of mass production and use on the production line, which is programmed robotic arm. As the first generation of manipulator position control systems main features, although not back several generations that can detect the external environment, but can stillsuccessfully complete like welding, painting, delivery as well as for materials simple movements. Second generation mechanical arms are equipped with sensors and manipulators have the environment there is a certain amount of \hen the mechanical arm is to use the program as a basis. Difference is that the robot begand[244]X62W万能铣床电控系统的PLC改造

2005-10-26

[摘要]本文阐述了X62W万能铣床电气控制线路的工作原理,详细说明了用PLC改造的具体方法,从而可以提高整个电气控制系统的工作性能。 [关键词]X62W万能铣床;电气控制系统;PLC;梯形图

X62W万能铣床是一种通用的多用途机床,它可以进行平面、斜面、螺旋面及

成型表面的加工,是一种较为精密的加工设备,它采用继电接触器电路实现电气控制。PLC专为工业环境应用而设计,其显著的特点之一就是可靠性高,抗干扰能力强。将X62W万能铣床电气控制线路改造为可编程控制器控制,可以提高整个电气控制系统的工作性能,减少维护、维修的工作量。

一、X62W万能铣床的主要结构及运动形式

X62W型万能铣床的外形结构如图1所示,它主要由床身、主轴、刀杆、悬梁、工作台、回转盘、横溜板、升降台、底座等几部分组成。在床身的前面有垂直导轨,升降台可沿着它上下移动。在升降台上面的水平导轨上,装有可在平行主轴轴线方向移动(前后移动)

manipulator control mode and programmable controllers introduction 2.1 Select discussion with manipulator control 2.1.1 classification of control relays and discrete electronic circuit can control old industrial equipment, but also more common. Mainly these two relatively cheap and you can meet the old-fashioned, simple (or simple) industrial equipment. So he can see them now, however these two control modes (relay and discrete electronic circuits) are these fatal flaws: (1) cannot adapt to the complex logic control, (2) only for the current project, the lack of compatibility and (3) not reforming the system with equipment improvements. Spring for the development of China's modern industrial automation technology the substantial increase in the level of industrial automation, completed the perfect relay of the computer too much. In termof controlling the computer showed his two great advantages: (1) each of the hardware can be installed on one or more microprocessors; (2) theofficial designer of the software writing content control is all about. Now in several ways in the context of industrial automation can often be seen in three ways: (1) Programmable Logical Controller (referred to as IPC); (2) Distributed Control System (DCS for short), and (3) the Programmable Logical Controller (PLC for short). 2.1.2 PLC and the IPC and DCS contrast contrast 1, each of the three technologies of origins and development requirements for fast data processing makes it invented the computer. The men brought in terms of hardware there, using a high level of standardization, can use more compatibility tools, is a rich software resources, especially the need for immediacy in operational systems. So the computer can effectively control is used to control and meet its speed, on the virtual model, real-time and in computational requirements. Distributed system started with a control system for industrial automatic instrument used to control, whereas now it is successfully developed into industrial control computer used as a central collection and distribution system and transition of distributed control system in analogue handling, loop control, has begun to reflect the use of a huge advantage. Though distributed system has great advntages in loop regulation, but only as a means of continuous process control. Optimization of PLC is the corresponding relay needs was born, its main use in the work order control, early primary is replaced relay this hulking system, focused on the switch controlling the running order of functions. Marked by the microprocessor in the early 1970 of the 20th century emerged, micro-electronics technology has developed rapidly, people soon microelectronics processing technology will be used in the Programmable Logical Controller (that is Manipulator is now used as a industrial robots in use, the control objectives often appear often in industrial automation. Industrial automation technology has gradually matured, as mature a technology line has been rapid development in industrial automation as a separate subject. Manipulator application began to filter into welding, logistics, mechanical processing, and other industries. Especially at high or very low temperatures, full of poisonous gases, high radiation case, robot in similar circumstances showed great use also brings great convenience to the staff. Precisely because of this robot to get people's attention began to be a high degree of development. Labor rates, working conditions, labor intensive aspects of promoting development. Both at home and abroad to develop the PLC (programmable logic controller) is in various special circumstances and under special conditions set for mechanical devices. Now turned on the development of the microelectronics automatic controltechnology and the rapid development of the trains, the success of PLC hardware software and simulation control win big and successful development, now continues to develop as a factory automation standards. Because robots are good development of the technology makes a good optimization of productive capital, and robot shows this unique advantages, such as: has good compatibility, wide availability, hardware is complete, and programming that can be mastered in a short time, so in the context of industrial PLC applications became ubiquitous. Manipulator in many developed country agriculture and industry has been applied, such as the use of mechanical harvesting large areas of farmland, repeated operations on the high-speed line that uses a robotic arm, and so on. Today, the high level of automation combined with restrictions on the manipulator development level is slightly lower than the international. The design is mainly arm welding machine by PLC Automation control. This of design let designers on in school by learn of has a must of consolidation, understand has some usually didn't opportunities awareness in world range within some leading level of knowledge has has must awareness, hope designers can in yihou of design in the can success of using in this design in the proceeds of experience 1.2 manipulator in both at home and abroad of research profile automation mechanical arm research began Yu 20th century medium-term, after years with with computer and automation technology of development, Makes mechanical arm on the Grand stage of industrial automation and shine, gradually became an industrial evaluation standards, and its importance can be seen. Now original robotic arm spent most of mass production and use on the production line, which is programmed robotic arm. As the first generation of manipulator position control systems main features, although not back several generations that can detect the external environment, but can stillsuccessfully complete like welding, painting, delivery as well as for materials simple movements. Second generation mechanical arms are equipped with sensors and manipulators have the environment there is a certain amount of \hen the mechanical arm is to use the program as a basis. Difference is that the robot begand 的溜板。溜板上部有可转动的回转盘,工作台就在溜板上部回转盘上的导轨上作垂直于主轴轴线方向移动(左右移动)。工作台上有T形槽用来固定工件。这样,安装在工作台上的工件就可以在三个坐标上的六个方向调整位置或进给。

铣床主轴带动铣刀的旋转运动是主运动;铣床工作台的前后(横向)、左右(纵向)和上下(垂直)6个方向的运动是进给运动;铣床其他的运动,如工作台的旋转运动则属于辅助运动。

二、X62W万能铣床的控制要求及电气控制线路分析

该铣床共用3台异步电动机拖动,它们分别是主轴电动机M1、进给电动机M2和冷却泵电动机M3。X62W万能铣床的电路如图2所示,该线路分为主电路、控制电路和照明电路三部分。电气控制线路的工作原理如下:

manipulator control mode and programmable controllers introduction 2.1 Select discussion with manipulator control 2.1.1 classification of control relays and discrete electronic circuit can control old industrial equipment, but also more common. Mainly these two relatively cheap and you can meet the old-fashioned, simple (or simple) industrial equipment. So he can see them now, however these two control modes (relay and discrete electronic circuits) are these fatal flaws: (1) cannot adapt to the complex logic control, (2) only for the current project, the lack of compatibility and (3) not reforming the system with equipment improvements. Spring for the development of China's modern industrial automation technology the substantial increase in the level of industrial automation, completed the perfect relay of the computer too much. In terms of controlling the computer showed his two great advantages: (1) each of the hardware can be installed on one or more microprocessors; (2) theofficial designer of the software writing content control is all about. Now in several ways in the context of industrial automation can often be seen in three ways: (1) Programmable Logical Controller (referred to as IPC); (2) Distributed Control System (DCS for short), and (3) the Programmable Logical Controller (PLC for short). 2.1.2 PLC and the IPC and DCS contrast contrast 1, each of the three technologies of origins and development requirements for fast data processing makes it invented the computer. The men brought in terms of hardware there, using a high level of standardization, can use more compatibility tools, is a rich software resources, especially the need for immediacy in operational systems. So the computer can effectively control is used to control and meet its speed, on the virtual model, real-time and in computational requirements. Distributed system started with a control system for industrial automatic instrument used to control, whereas now it is successfully developed into industrial control computer used as a central collection and distribution system and transition of distributed control system in analogue handling, loop control, has begun to reflect the use of a huge advantage. Though distributed system has great advantages in loop regulation, but only as a means of continuous process control. Optimization of PLC is the corresponding relay needs was born, its main use in the work order control, early primary is replaced relay this hulking system, focused on the switch controlling the running order of functions. Marked by the microprocessor in the early 1970 of the 20th century emerged, micro-electronics technology has developed rapidly, people soon microelectronics processing technology will be used in the Programmable Logical Controller (that isManipulator is now used as a industrial robots in use, the control objectives often appear often in industrial automation. Industrial automation technology has gradually matured, as mature a technology line has been rapid development in industrial automation as a separate subject. Manipulator application began to filter into welding, logistics, mechanical processing, and other industries. Especially at high or very low temperatures, full of poisonous gases, high radiation case, robot in similar circumstances showed great use also brings great convenience to the staff. Precisely because of this robot to get people's attention began to be a high degree of development. Labor rates, working conditions, labor intensive aspects of promoting development. Both at home and abroad to develop the PLC (programmable logic controller) is in various special circumstances and under special conditions set for mechanical devices. Now turned on the development of the microelectronics automatic controltechnology and the rapid development of the trains, the success of PLC hardware software and simulation control win big and successful development, now continues to develop as a factory automation standards. Because robots are good development of the technology makes a good optimization of productive capital, and robot shows this unique advantages, such as: has good compatibility, wide availability, hardware is complete, and programming that can be mastered in a short time, so in the context of industrial PLC applications became ubiquitous. Manipulator in many developed country agriculture and industry has been applied, such as the use of mechanical harvesting large areas of farmland, repeated operations on the high-speed line that uses a robotic arm, and so on. Today, the high level of automation combined with restrictions on the manipulator development level is slightly lower than the international. The design is mainly arm welding machine by PLC Automation control. This of design let designers on in school by learn of has a must of consolidation, understand has some usually didn't opportunities awareness in world range within some leading level of knowledge has has must awareness, hope designers can in yihou of design in the can success of using in this design in the proceeds of experience 1.2 manipulator in both at home and abroad of research profile automation mechanical arm research began Yu 20th century medium-term, after years with with computer and automation technology of development, Makes mechanical arm on the Grand stage of industrial automation and shine, gradually became an industrial evaluation standards, and its importance can be seen. Now original robotic arm spent most of mass production and use on the production line, which is programmed robotic arm. As the first generation of manipulator position control systems main features, although not back several generations that can detect the external environment, but can stillsuccessfully complete like welding, painting, delivery as well as for materials simple movements. Second generation mechanical arms are equipped with sensors and manipulators have the environment there is a certain amount of \hen the mechanical arm is to use the program as a basis. Difference is that the robot begand

1.主电路分析

manipulator control mode and programmable controllers introduction 2.1 Select discussion with manipulator control 2.1.1 classification of control relays and discrete electronic circuit can control old industrial equipment, but also more common. Mainly these twofficial designer of the software writing content control is all about. Now in several ways in the context of industrial automation can often be seen in three ways: (1) Programmable Logical Controller (referred to as IPC); (2) Distributed Control System (DCS for short), industrial control computer used as a central collection and distribution system and transition of distributed control system in analogue handling, loop control, has begun to reflect the use of a huge advantage. Though distributed system has great advantages in l

p and you can meet the old-fashioned, simple (or simple) industrial equipment. So he can see them now, however these two control modes (relay and discrete electronic circuits) are these fatal flaws: (1) cannot adapt to the complex logic control, (2) only for the current project, the lack of compatibility and (3) not reforming the system with equipment improvements. Spring for the development of China's modern industrial automation technology the substantial increase in the level of industrial automation, completed the perfect relay of the computer too much. In terms of controlling the computer showed his two great advantages: (1) each of the hardware can be installed on one or more microprocessors; (2) theLogical Controller (PLC for short). 2.1.2 PLC and the IPC and DCS contrast contrast 1, each of the three technologies of origins and development requirements for fast data processing makes it invented the computer. The men brought in terms of hardware there, using a high level of standardization, can use more compatibility tools, is a rich software resources, especially the need for immediacy in operational systems. So the computer can effectively control is used to control and meet its speed, on the virtual model, real-time and in computational requirements. Distributed system started with a control system for industrial automatic instrument used to control, whereas now it is successfully developed into as a means of continuous process control. Optimization of PLC is the corresponding relay needs was born, its main use in the work order control, early primary is replaced relay this hulking system, focused on the switch controlling the running order of functions. Marked by the microprocessor in the early 1970 of the 20th century emerged, micro-electronics technology has developed rapidly, people soon microelectronics processing technology will be used in the Programmable Logical Controller (that iso relatively cheaand (3) the Programmable oop regulation, but only