利息理论第四章 债务偿还 下载本文

内容发布更新时间 : 2024/12/28 8:14:29星期一 下面是文章的全部内容请认真阅读。

1.解:由2000?an0.12?10000得an0.12?5 查表得:8

2000?a80.12?X?1.12?9?1000X?179.47366

故:B5?2000?a30.12?X?1.12?4?4917.72 2.解:设分十年均衡偿还的年金额为Y,则

Y?a100.08?X

Y?Xa100.08

由题意得:

X?1.0810?X?10Y?X?468.0510 X?1.0810?X?468.05a100.08X?700

3.解:由题意知每个季度的实际利率为2.5%,设最初贷款额为X,则

X?1.0254?1500?s40.025?12000X?16514.375

4.解:由题意得

(X?10000i)?s100.08?10000

X?10000?10000i……① s100.08(X?10000i)?s100.08?(1.5X?20000i)?s100.08 0.5X?10000i……②

把①代入②得:

5000?5000i?10000i14.48656

1i??0.069014.486565.

未来法:2000?s8i?1000?a3i

过去法(2000?a15i?1000?a10i?1000?a5i)?(1?i)7?4000?s5i?(1?i)2?3000?s2i 6.解:

Bt?an?tBt?1?an?t?1Bt?2?an?t?2Bt?1?an?t?3

⑴对于(Bt?Bt?1)(Bt?2?Bt?3)?(Bt?1?Bt?2)2

1?vn?t1?vn?t?11?vn?t?21?vn?t?3vn?t(v?1?1)vn?t?2(v?1?1)v2n?2t?2(v?1?1)2(Bt?Bt?1)(Bt?2?Bt?3)?(?)(?)???iiiiiii2

1?vn?t?11?vn?t?22vn?t?1(v?1?1)2v2n?2t?2(v?1?1)2(Bt?1?Bt?2)?(?)?()?

iiii22所以

(Bt?Bt?1)(Bt?2?Bt?3)?(Bt?1?Bt?2)2

⑵对于Bt?Bt?3?Bt?1?Bt?2 因为

Bt?Bt?3?(Bt?1?Bt?2)?Bt?Bt?3?Bt?1?Bt?21?vn?t1?vn?t?31?vn?t?11?vn?t?2????iiiivn?t(?1?v?1?v?3?v?2) ?ivn?t[(?1?v?1)?v?2(?1?v?1)]?ivn?t(v?1?1)(1?v?2)?ivn?t?0,(1?v?2)?0,(v?1?1)?0所以

Bt?Bt?3?Bt?1?Bt?2

7.解:设月实际利率为j,则

(1?j)?1?(1?i)?112?1.5?148 1000001?v80B40??a80j?100000??77103.81a120j1?v120

8.解:由题意知前12次的季实际利率为0.03,调整后的季实际利率为0.035,则

23115?1.0312?1.03512?1000?s120.03?1.03512?1000?s120.035?13752.39

9.解:由题意,设第k年末的偿还额X中有 利息部分IR?a20?k?10.09?X?(1?v20?k?1) 本金部分BR?X?IR?X?v20?k?1