复变函数论 期末复习题 下载本文

内容发布更新时间 : 2024/12/23 3:21:11星期一 下面是文章的全部内容请认真阅读。

?f(z)?1f(?)d?

2?i?C??z3?2?7??1d?. ??C??z2 因此 f(?)?2?i(?3??7? 1) 故f(z)?2?i(3z2?7z?1)

f?(1?i)?2?i(6z?7)1?i?2?i(13?6i)?2?(?6?13i).

3、解:

ezezf(z)?2?.z?1(z?i)(z?i)Res(f(z),i)?4、解:

?ieie,Res(f(z),?i)?.22ii

z?12?11 ????1z(z?1)(z?2)z?1z?2z(1?)1?z21?1,zz?1. 2 由于1?z?2,从而 因此在1?z?2内

z有

(z?1)z(???1?1nzn1?znn1???()?()??[()?( )].?2?2)zn?0zn?0z2n?0z?1x?1?iy(x2?y2?1)?2yi5、解:设z?x?iy, 则w?. ??22z?1z?1?iy(x?1)?yx2?y2?1 ?Rew?,22(x?1)?yImw?2y. 22(x?1)?yz2?z?2,则f(z)在Imz?0内有两个一级极点z1?3i,z2?i, 6、解:设f(z)?4z?10z2?9Res(f(z),3i)?3?7i1?i,Res(f(z),i)??, 4816因此,根据留数定理有

?????z2?z?23?7i1?i?dz?2?i(?)??.

z4?10z2?948166四、证明题(20分)

31

2、证明:设u(x,y)?a?bi,则ux?uy?0, 由于f(z)?u?iv在内D解析,因此

?(x,y)?D有 ux?vy?0, uy??vx?0.

于是v(x,y)?c?di故f(z)?(a?c)?(b?d)i,即f(z)在内D恒为常数. 3、证明:由于z0是f(z)的m阶零点,从而可设 f(z)?(z?z0)mg(z), 其中g(z)在z0的某邻域内解析且g(z0)?0,

于是

111 ??mf(z)(z?z0)g(z)1在内D1解析,故g(z)由g(z0)?0可知存在z0的某邻域D1,在D1内恒有g(z)?0,因此

z0为

1的m阶极点. f(z)《复变函数》考试试题(十)参考答案

一、判断题(40分):

1.√ 2. √ 3.√ 4. × 5. √ 6. × 7. √ 8. √ 9. √ 10. √ 二、填空题(20分): 1. 2?i 2.

z1z??i1 3. 4. 5. 2(n?1)!(1?z)三、计算题(40分) 1. 解:f(z)?z在z?2上解析,由cauchy积分公式,有 29?zz22z9?zdz?dz? ?2?i??z?2z?iz?2(9?z2)(z?i)9?z2?z??i?5

eize?iiRes(f,?i)??e 2. 解:设f(z)?,有

1?z2?2i22??n??n?1?i??1?i?3. 解:???(cos?isin)?(cos?isin) ???4444?2??2? ?cosnnn?n?n?n?n??isin?cos?isin?2cos 4444432

4. 解:

?u2x?u2y, ?2?222?xx?y?yx?y(x,y)v(x,y)?? ?(0,0)?uydx?uxdy?c??(x,y)(0,0)?2y2xdx?dy?c

x2?y2x2?y2?y0y2x?2arctan?c dy?c22xx?yf(1?i)?u(1,1)?iv(1,1)?ln2?i(2arctan1?c)?ln2

故c???2,v(x,y)?2arctany?? x2

《复变函数》考试试题(十一)参考答案

一、1.× 2.√ 3.× 4.√ 5.√ 二、1. 1 2.? 3.u?11 4.u? 222k???2k????isin)(k?0,1,2,3) 5.zk?4a(cos4412n2?1 8.15 6. 7.

3?9.

?(a) 10. ?m ??(a)?ux?2,2?xx?y?uy?2 2?yx?y三、1.解:

v(x,y)? ????(x,y)(0,0)?uydx?uxdy?C

yxdx?dy?C

x2?y2x2?y2(x,y)(0,0)? ?y0xydy?C?arctan?C. 22x?yx?iv(1又 f(1?i)?u(1,1)

?故C???4,11ln2?i(arctan1?C)?ln2. 22y?v(x,y)?arctan?.

x4 33

1sin2zz?(2k?)?,2.解: (1) tanz?奇点为

2cos2z2k?0,?1?对任意整数k,

1z?(2k?)?为二阶极点, z??为本性奇点.

2 (2) 奇点为z0?1,zk?2k?i,(k?0,?1?)

z?1为本性奇点,对任意整数k,zk为一级极点,z??为本性奇点.

z193. (1)解: f(z)?2共有六个有限奇点, 且均在内C:z?4, 443(z?1)(z?2)由留数定理,有

?z?4f(z)dz?2?i[?Res(f,?)]

将f在z??的去心邻域内作Laurent展开

f(z)?z1912z(1?2)4?z12(1?4)3zz8

11??z(1?1)4(1?2)3z2z414106z4 ?(1?2?4??)(1?4?8??)

zzzzz14??3??zz所以Res(f,?)??C?1??1

?z?4f(z)dz?2?i.

(2)解: 令z?e,则

i?I?? ??0d?12?d?? 22?01?cos?21?cos?14zdz

2?C:z?1i(z4?6z2?1)4zdz2du?,故 422i(z?6z?1)i(u?6u?1)再令z?u则

2 34

12du2du I??2??22?C:z?1C2i(u?6u?1)iu?6u?1由留数定理,有

21? I??2?iRes(f,?3?8)?4???i422四、1.证明: f(z)?u(x,?y)?iv(x,?y)?u*?iv*

u*?u(x,?y),ux?ux,**v*??v(x,?y)vx??vx,*uy??uy,vy?vy*

由f(z)?u(x,y)?iv(x,y)在上半平面内解析,从而有

ux?vy,**因此有ux?vy,uy??vx.

uy*??vx*

故f(z)在下半平面内解析. 2.证明: (1) ?r1?r2,0?r1?r2?R则

z?r1z?r1 M(r1)?maxf(z)?maxf(z) M(r2)?maxf(z)?maxf(z)

z?r2z?r2故M(r2)?M(r1),即M(r)在[0,R)上为r的上升函数. (2)如果存在r1及r2(0?r1?r2?R)使得M(r1)?M(r2) 则有 maxf(z)?maxf(z)

z?r2z?r1于是在r1?z?r2内f(z)恒为常数,从而在z?R内f(z)恒为常数.

《复变函数》考试试题(十二)参考答案

一、判断题.

1. × 2. × 3. × 4. √ 5. × 二、填空题.

1. ?1 2. (??) 3. f(z)?z?1 4. 0,? z5. i 6. 2? 7. 1 8.

35

2n2??1