【精品】北师大初中数学中考总复习:多边形与平行四边形--知识讲解(提高) 下载本文

内容发布更新时间 : 2024/11/17 16:45:12星期一 下面是文章的全部内容请认真阅读。

中考总复习:多边形与平行四边形--知识讲解(提高)

【考纲要求】 1. 多边形

A:了解多边形及正多边形的概念;了解多边形的内角和与外角和公式;知道用任意一个正三角形、正方形或正六边形可以镶嵌平面;了解四边形的不稳定性;了解特殊四边形之间的关系.

B:会用多边形的内角和与外角和公式解决计算问题; 能用正三角形、正方形、正六边形进行简单的镶嵌设计;能依据条件分解与拼接简单图形. (2)平行四边形

A:会识别平行四边形.

B:掌握平行四边形的概念、判定和性质,会用平行四边形的性质和判定解决简单问题. C:会运用平行四边形的知识解决有关问题. 【知识网络】

【考点梳理】 考点一、多边形 1. 多边形:

在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形. 多边形的对角线是连接多边形不相邻的两个顶点的线段.

2.多边形的对角线:

从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n-2)个三角形. 3.多边形的角:

n边形的内角和是(n-2)·180°,外角和是360°.【要点诠释】

(1)多边形包括三角形、四边形、五边形……,等边三角形是边数最少的正多边形. (2)多边形中最多有3个内角是锐角(如锐角三角形),也可以没有锐角(如矩形).

(3)解决n边形的有关问题时,往往连接其对角线转化成三角形的相关知识,研究n边形的外角问题时,也往往转化为n边形的内角问题. 考点二、平面图形的镶嵌 1.镶嵌的定义

用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌. 2.平面图形的镶嵌

(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;

(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;

(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.

【要点诠释】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.

考点三、三角形中位线定理

1.连接三角形两边中点的线段叫做三角形的中位线.

2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 考点四、平行四边形的定义、性质与判定 1.定义:

两组对边分别平行的四边形是平行四边形. 2.性质:

(1)平行四边形的对边平行且相等; (2)平行四边形的对角相等,邻角互补; (3)平行四边形的对角线互相平分;

(4)平行四边形是中心对称图形,对角线的交点是它的对称中心. 3.判定:

(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形; (4)两组对角分别相等的四边形是平行四边形; (5)对角线互相平分的四边形是平行四边形. 【要点诠释】

在平行四边形的学习中,学习它的性质定理和判定方法时,主要从三个不同角度加以分析:边、角与对角线:

1.对于边,从位置(比如平行、垂直等)和大小(比如相等或倍半关系等)两方面探讨邻边或对边的关系特征;

2.对于角,以邻角和对角两方面为主,探讨其大小关系(比如相等、互补等)或具体度数; 3.对于对角线,则探讨两条对角线之间的位置和大小关系,以及它们与边、角之间的关系. 考点五:平行线间的距离 1.两条平行线间的距离:

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离. 【要点诠释】

1.距离是指垂线段的长度,是正值.

2.平行线间的距离处处相等.任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度.

3.两条平行线间的任何两条平行线段都是相等的. 2.平行四边形的面积:

平行四边形的面积=底×高(等底等高的平行四边形面积相等). 【典型例题】

类型一、多边形与平面图形的镶嵌

1.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC上,将△ABC沿着DE重叠压平,A与A′重合,若∠A=70°,则∠1+∠2=_________.

【思路点拨】首先根据四边形的内角和公式可以求出四边形ADA′E的内角和,由折叠可知∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′,又∠A=70°,由此可以求出∠AED+∠A′ED+∠ADE+∠A′DE,再利用邻补角的关系即可求出∠1+∠2.

【答案与解析】∵四边形ADA′E的内角和为(4-2)?180°=360°, 而由折叠可知∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′,

∴∠AED+∠A′ED+∠ADE+∠A′DE=360°-∠A-∠A′=360°-2×70°=220°, ∴∠1+∠2=180°×2-(∠AED+∠A′ED+∠ADE+∠A′DE)=140°.

【总结升华】本题考查根据多边形的内角和计算公式求和多边形相关的角的度数,解答时要会根据公 式进行正确运算、变形和数据处理. 举一反三:

【变式】一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是( ) A.10 B.11 C.12 D.以上都有可能 【答案】D.

2.(2015春?邗江区校级期末)已知在四边形ABCD中,∠A=x,∠C=y,(0°<x<180°,0°<y<180°).

(1)∠ABC+∠ADC= (用含x、y的代数式表示);

(2)如图1,若x=y=90°,DE平分∠ADC,BF平分与∠ABC相邻的外角,请写出DE 与 BF 的位置关系,并说明理由.

(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角, ①当x<y时,若x+y=140°,∠DFB=30°试求x、y.

②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,∠DFB不存在.

【思路点拨】(1)利用四边形内角和定理得出答案即可; (2)利用角平分线的性质结合三角形外角的性质得出即可;

(3)①利用角平分线的性质以及三角形内角和定理,得出∠DFB=y﹣x=30°,进而得出x,y的值; ②当x=y时,DC∥BF,即∠DFB=0,进而得出答案. 【答案与解析】解:(1)∠ABC+∠ADC=360°﹣x﹣y; 故答案为:360°﹣x﹣y;