菱形的性质与判定(一)导学案 下载本文

内容发布更新时间 : 2025/1/13 6:52:23星期一 下面是文章的全部内容请认真阅读。

第一章 特殊平行四边形

1.菱形的性质与判定(一)

一、教学目标:

1.

经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系;

2.

体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力;

3.

在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力

三、教学过程设计

本节课设计了六个教学环节:第一环节:课前准备;第二环节:设置情境 ,提出课题;第三环节:猜想 、探究与证明;第四环节:性质应用与巩固;第五环节:课堂小结;第六环节:布置作业。

第一环节 课前准备

1、教师在课前布置学生复习平行四边形的性质,搜集菱形的相关图片。 2、教师准备菱形纸片,上课前发给学生上课时使用。

第二环节设置情境 ,提出课题

【教学内容】

学生:观察衣服、衣帽架和窗户等实物图片。

教师:同学们,在观察图片后,你能从中发现你熟悉的图形吗?你认为它们有什么样的共同特征呢?

学生1:图片中有八年级学过的平行四边形。

教师:请同学们观察,彩图中的平行四边形与 ABCD相比较,还有不同点吗?

学生2:彩图中的平行四边形不仅对边相等,而且任意两条邻边也相等。 教师:同学们观察的很仔细,像这样,“一组邻边相等的平行四边形叫做菱形”。 【注意事项】

学生在通过观察对比得到菱形定义的过程中,会提出菱形的许多性质,如四条边相等、对角相等和对边平行等等,教师要对学生的答案进行积极的有鼓励性的评价,激发学生的学习积极性,同时又要强调菱形不仅是平行四边形,而且有其自身特点“一组邻边相等”,这样强化了菱形的定义,又为下面的教学内容做好了铺垫。

第三环节 猜想 、探究与证明

【教学内容】

1、想一想

①教师:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。你能列举一些这样的性质吗?

学生:菱形的对边平行且相等,对角相等,对角线互相平分。 ②教师:同学们,你认为菱形还具有哪些特殊的性质?请你与同伴交流。 学生活动:分小组讨论菱形的性质,组长组织组员讨论,让尽可能多的组员发言,并汇总结果。

教师活动:教师巡视,并参与到学生的讨论中,启发同学们类比平行四边形,从图形的边、角和对角线三个方面探讨菱形的性质。对学生的结论,教师要及时评价,积极引导,激励学生。

2、做一做

教师:请同学们用菱形纸片折一折,回答下列问题:

(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么

位置关系?

(2)菱形中有哪些相等的线段?

学生活动:分小组折纸探索教师的问题答案。组长组织,并汇总结果。 教师活动:教师巡视并参与学生活动,引导学生分析怎样折纸才能得到正确的结论。学生研讨完毕,教师要展示汇总学生的折纸方法以及相应的结论,以便于后面的教学。

师生结论:①菱形是周对称图形,有两条对称轴,是菱形对角线所在的直线,两条对角线互相垂直。②菱形的四条边相等。

3、证明菱形性质

教师:通过折纸活动,同学们已经对菱形的性质有了初步的理解,下面我们要对菱形的性质进行严格的逻辑证明。

教师活动:展示题目

图1-1 BAOCD已知:如图1-1,在菱形ABCD中,AB=AD,对角线AC与BD相交于点O. 求证:(1)AB=BC=CD=AD;(2)AC⊥BD.

师生共析:①菱形不仅对边相等,而且邻边相等,这样就可以证明菱形的四

条边都相等了。

②因为菱形是平行四边形,所以点O是对角线AC与BD中点;又因为在菱形中可以得到等腰三角形,这样就可以利用“三线合一”来证明结论了。

学生活动:写出证明过程,进行组内交流对比,优化证明方法,掌握相关定