内容发布更新时间 : 2024/12/28 21:41:55星期一 下面是文章的全部内容请认真阅读。
……………………………密…..……封…………线……..…内………不………要………答………题…………………………………… 学校: 班级: 姓名: 座位号: 2018~2019学年(上)第三次月考测试卷
八年级 数学
(考试时间:120分钟 满分:150分)
一、 精心选一选(每小题5分,共计50分,请把答案写在答题卡内)
题号 选项 1、直线
1 2 3 4 5 6 7 8 9 10 y?kx?3过点(2,1),则k的值是( )
B
O C D
A、k??2 B、k?2 C、k??1 D、k?1 2、点P(m,n)在第四象限,则下列各式中,一定成立的是( )
A
(图1) A、mn?0 B、mn?0 C、m?n?0 D、m?n?0
3、点P在第二象限,并且到x轴的距离为1,到y轴的距离为3,那么点P的坐标为( ) A、 (-1,3) B、(-1,-3) C、(-3,-1) D、(-3,1)
4、如图1,AB∥CD,AD∥BC,AC和BD相交于点O。则图中全等三角形有( )
A、1对 B、2对 C、3对 D、4对
5、若AB=EF,AC=FD,要判断ABC≌FED,还要添加的条件为( )
A、?C??D B、?B??E C、?A??F D、∠A=∠D 6、某产品的生产流水线每小时可生产100件产品,生产的产品没有积压,生产3小时后安排工人装箱,若每小时装箱150件,若未装箱的产品数量y(件)是装箱时间t(时)的函数,则这个函数大致图象只能是( ) A、 y B、 y_ 、 y_ y D、 __ C
_t 0_t _t 0_t 0_ _ _ 0_
7、若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比
为( )
A、3:2:1 B、5:4:3 C、3:4:5 D、1:2:3 8、已知一次函数y?(m?3)x?5?m,y随x的增大而减小,且与y轴的交点在y轴的
正半轴上,则m的取值范围是( )
A、m??5 B、m??3 C、?5?m??3 D、以上都不对
9、一个正比例函数的图象点(8,-4),它的表达式为( )
A、y??2x B、y?2x C、y??11x D、y?x
2210、下列命题中是真命题的是( )
A.三角形可分为斜三角形、直角三角形和锐角三角形; B.等腰三角形任一个内角都有可能是钝角或直角; C.三角形外角一定是钝角;
D.△ABC中,如果∠A>∠B>∠C,那么∠A>60°,∠C<60°
二、细心填一填(每小题6分,共计30分)
11、直线y=x+1与x轴交点的坐标为___,与y轴交点的坐标为___.
12、设△ABC的三边a , b ,c均为自然数,且a=3,b=5,这样的三角形共有 个。
13、已知点P向上平移5个单位,再向左平移3个单位得到点P′(-5,3),
则点P坐标为 .
14、△ABC和△A′B′C′中,已知∠A=∠B′,AB=B′C′,增加条件 可使△ABC≌△B′C′A′(ASA).
15、命题“等角的补角相等”的逆命题为 ,
这是个 命题(填“真“或”假“)。
三、耐心做一做(每题10分,共计70分)
16、一次函数图像经过A(2,6)、B(-3,14)两点,求该一次函数关系式。
17、在平面直角坐标系中有两条直线:y=2x+2与y=-3x+12,它们的交点为P,
且它们与x轴的交点分别为A、B.求: (1)点A,B,P的坐标;(2)△PAB的面积.
18、完成以下证明,并在括号内填写理由: 已知:如图所示,∠1=∠2,∠A=∠3. 求证:AC∥DE.
证明:∵ ∠1=∠2 ( )
∴ AB∥____ ( ) ∴ ∠A=____ ( ) 又∵ ∠A=∠3 ( )
∴ ∠3=_ _ ( )
∴ AC∥DE ( )
19、已知:如图,∠A=50°,∠B=40°,∠C=30°,求∠BDC
的度数。
ADBC
20、设函数y=x+4的图象与y轴交于A点,函数y=-3x-8的图象与y轴交于B点,两个函数的图象交于C点,求通过线段AB的中点D及C点的一次函数表达式。