内容发布更新时间 : 2024/12/26 21:08:23星期一 下面是文章的全部内容请认真阅读。
A
证明:延长AB取点E,使AE=AC,连接DE ∵AD平分∠BAC ∴∠EAD=∠CAD ∵AE=AC,AD=AD ∴△AED≌△ACD (SAS) ∴∠E=∠C ∵AC=AB+BD ∴AE=AB+BD ∵AE=AB+BE ∴BD=BE ∴∠BDE=∠E ∵∠ABC=∠E+∠BDE ∴∠ABC=2∠E ∴∠ABC=2∠C
5. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
证明:
在AE上取F,使EF=EB,连接CF ∵CE⊥AB
∴∠CEB=∠CEF=90° ∵EB=EF,CE=CE, ∴△CEB≌△CEF ∴∠B=∠CFE
∵∠B+∠D=180°,∠CFE+∠CFA=180° ∴∠D=∠CFA ∵AC平分∠BAD ∴∠DAC=∠FAC ∵AC=AC
∴△ADC≌△AFC(SAS) ∴AD=AF
∴AE=AF+FE=AD+BE
6. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
A B
D
C
解:延长AD到E,使AD=DE ∵D是BC中点 ∴BD=DC
在△ACD和△BDE中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD≌△BDE ∴AC=BE=2 ∵在△ABE中 AB-BE<AE<AB+BE ∵AB=4
即4-2<2AD<4+2 1<AD<3 ∴AD=2
7. 已知:D是AB中点,∠ACB=90°,求证:CD?1AB 2A D C B 解:延长AD到E,使AD=DE ∵D是BC中点 ∴BD=DC 在△ACD和△BDE中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD≌△BDE ∴AC=BE=2 ∵在△ABE中 AB-BE<AE<AB+BE ∵AB=4 即4-2<2AD<4+2 1<AD<3 ∴AD=2