内容发布更新时间 : 2025/1/9 23:40:16星期一 下面是文章的全部内容请认真阅读。
精选资料
第1章 反比例函数 1.1 反比例函数
教学目标
【知识与技能】
理解反比例函数的概念,根据实际问题能列出反比例函数关系式. 【过程与方法】
经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力. 【情感态度】
培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值. 【教学重点】
理解反比例函数的概念,能根据已知条件写出函数解析式. 【教学难点】
能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.
教学过程
一、情景导入,初步认知
1.复习小学已学过的反比例关系,例如:
(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数) (2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)
2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?
【教学说明】对相关知识的复习,为本节课的学习打下基础. 二、思考探究,获取新知 探究1:反比例函数的概念
可修改编辑
.
(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.
(2)利用(1)的关系式完成下表:
(3)随着时间t的变化,平均速度v发生了怎样的变化? (4)平均速度v是所用时间t的函数吗?为什么?
(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?
k【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,
x那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.
【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.
【教学说明】教师组织学生讨论,提问学生,师生互动. 三、运用新知,深化理解 1.见教材P3例题.
2.下列函数关系中,哪些是反比例函数?
(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;
(2)压强p一定时,压力F与受力面积S的关系;
2 ..
精选资料
(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.
(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.
k分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y= (k是常
x数,k≠0).所以此题必须先写出函数解析式,后解答.
解:
(1)a=12/h,是反比例函数; (2)F=pS,是正比例函数; (3)F=W/s,是反比例函数; (4)y=m/x,是反比例函数. 3.当m为何值时,函数y=
4x2m-2是反比例函数,并求出其函数解析式.分析:由反比例函
数的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数
4的解析式为y=.
x4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=1.98kg/m3 (1)求p与V的函数关系式,并指出自变量的取值范围. (2)求V=9m3时,二氧化碳的密度. 解:略
5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.
分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.
解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=+y2,所以y=k1x+
k2 ,当x=2与x=3时,y的值都等于19. 2xk2 ,而y=y12x可修改编辑