(含15套模拟卷)河北省沧州市重点名校初中2018-2019学年数学中考模拟试卷汇总 下载本文

内容发布更新时间 : 2025/1/11 18:10:47星期一 下面是文章的全部内容请认真阅读。

中考数学模拟试卷含答案

注意事项:

1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共8小题,每小题3分,满分24分)

1.﹣0.2的倒数等于( ) A.0.2 B.﹣5 C.﹣ D.5

2.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )

A. B. C. D.

3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为( )

A.5.23×10元 B.5.23×10元 C.523×10元

4

7

8

D.5.23×10元

8

4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是( )

A.96,94.5 B.96,95 C.95,94.5 D.95,95

5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( )

A.18个 B.15个 C.12个 D.10个

6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为( )

A.(﹣a,﹣b) B.(b,a) C.(﹣b,a) D.(b,﹣a)

7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为( ) A.10(1+x)=36.4 B.10+10(1+x)=36.4

C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)=36.4

8.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为( )

2

2

2

A. B. C. D.

二、填空题(本题满分21分,共有6道小题,每小题3分) 9.计算:(﹣1)﹣

2

×(2013﹣π)+()= .

0﹣1

10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是 . 11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是 . 12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB= .

13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO= 度.

14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是 个.

15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.

在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.

三、解答题(共9题,74分) 16.(8分)计算

(1)求一次函数y=﹣2x+2和y=x=1的交点坐标. (2)化简:(

)?

17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:

(1)此次抽样调查中,共调查了 名学生; (2)将图①补充完整;

(3)求出图②中C级所占的圆心角的度数;

(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)

18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.

(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?

(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?

19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元. (1)求两种球拍每副各多少元?

(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.

21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE. (1)求证:BF=CF.

(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.

22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本

60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.

(1)求y与x之间的函数关系式,并写出x的取值范围;

(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;

(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.

23.(10分)阅读材料,回答问题:

小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=

,AB=c=2,那么

=

=2.

通过上查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究: (1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c. 请判断此时“

=

=

”的关系是否成立?

==

(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:

如图3,在锐角△ABC中,BC=a,AC=b,AB=c. 过点C作CD⊥AB于D.

∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°, ∴sinA= ,sinB= . ∴∴

= ,=

= .