内容发布更新时间 : 2024/11/15 1:07:33星期一 下面是文章的全部内容请认真阅读。
《计量经济学》期末测试复习资料
第一章 绪论
参考重点:
计量经济学的一般建模过程 第一章课后题(1.4.5)
1.什么是计量经济学?计量经济学方法和一般经济数学方法有什么区别?
答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。
4.建立和使用计量经济学模型的主要步骤有哪些?
答:建立和使用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;(3)估计模型参数;(4)检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
5.模型的检验包括几个方面?其具体含义是什么?
答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号和大小是否和根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
第二章 经典单方程计量经济学模型:一元线性回归模型
参考重点:
1.相关分析和回归分析的概念、联系以及区别?
2.总体随机项和样本随机项的区别和联系?
3.为什么需要进行拟合优度检验?
4.如何缩小置信区间?(P46)
??t??s???????t??s?)?1??P(?iii?.增大样本容量。样本容量变大,可使样本参数估计量的标准差减小;同时,在?由上式可以看出(1)
2i2i同样置信水平下,n越大,t分布表中的临界值越小。(2)提高模型的拟合优度。因为样本参数估计量的标准差和残差平方和呈正比,模型的拟合优度越高,残差平方和应越小。
5.以一元线性回归为例,写出β0的假设检验 1).对总体参数提出假设 H0:?0=0, H1:?0?0
2)以原假设H0构造t统计量, t23)由样本计算其值i
?????00??2?Xtn?4)给定显著性水平?,查t分布表得临界值t ?/2(n-2) 05)比较,判断
若 |t|> t ?/2(n-2),则拒绝H0 ,接受H1 ; 若 |t|? t ?/2(n-2),则拒绝H1 ,接受H0 ; 上届重点:
一元线性回归模型的基本假设、随机误差项产生的原因、最小二乘法、参数经济意义、决定系数、第二章PPT里的表(中国居民人均消费支出对人均GDP的回归)、t检验(△(平方)代表意义;△(平方)的认识)、能够读懂Eviews输出的估计结果
第二章课后题(1.3.9.10)
1.为什么计量经济学模型的理论方程中必须包含随机干扰项? (经典模型中产生随机误差的原因)
答:计量经济学模型考察的是具有因果关系的随机变量间的具体联系方式。由于是随机变量,意味着影响被解释变量的因素是复杂的,除了解释变量的影响外,还有其他无法在模型中独立列出的各种因素的影响。这样,理论模型中就必须使用一个称为随机干扰项的变量宋代表所有这些无法在模型中独立表示出来的影响因素,以保证模型在理论上的科学性。
3.一元线性回归模型的基本假设主要有哪些?违背基本假设的模型是否不可以估计?
答:线性回归模型的基本假设有两大类:一类是关于随机干扰项的,包括零均值,同方差,不序列相
x?S???2??0i????00S??0~t(n?2)
关,满足正态分布等假设;另一类是关于解释变量的,主要有:解释变量是非随机的,若是随机变量,则和随机干扰项不相关。实际上,这些假设都是针对普通最小二乘法的。
在违背这些基本假设的情况下,普通最小二乘估计量就不再是最佳线性无偏估计量,因此使用普通最小二乘法进行估计己无多大意义。但模型本身还是可以估计的,尤其是可以通过最大似然法等其他原理进行估计。
假设1. 解释变量X是确定性变量,不是随机变量; 假设2. 随机误差项?具有零均值、同方差和不序列相关性: E(?i)=0 i=1,2, …,n Var (?i)=??2 i=1,2, …,n Cov(?i, ?j)=0 i≠j i,j= 1,2, …,n
假设3. 随机误差项?和解释变量X之间不相关: Cov(Xi, ?i)=0 i=1,2, …,n
假设4. ?服从零均值、同方差、零协方差的正态分布 ?i~N(0, ??2 ) i=1,2, …,n
假设5. 随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。即
2(X?X)/n?Q,?i假设6. 回归模型是正确设定的
9、10题为计算题,见课本P52,答案见P17
n??
第三章 经典单方程计量经济学模型:多元线性回归模型
上届重点:
F检验、t检验 调整的样本决定系数、“多元”里为什么要对△(平方)系数进行调整? 第三章课后题(1.2.7.9.10)
1.多元线性回归模型的基本假设是什么?在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?
答:多元线性回归模型的基本假定仍然是针对随机干扰项和针对解释变量两大类的假设。针对随机干扰项的假设有:零均值,同方差,无序列相关且服从正态分布。针对解释量的假设有;解释变量应具有非随机性,如果后随机的,则不能和随机干扰项相关;各解释变量之间不存在(完全)线性相关关系。
在证明最小二乘估计量的无偏性中,利用了解释变量非随机或和随机干扰项不相关的假定;在有效性的证明中,利用了随机干扰项同方差且无序列相关的假定。
2.在多元线性回归分析中,t检验和F检验有何不同?在一元线性回归分析中二者是否有等价作用?(见课本P70)
答:在多元线性回归分析中,t检验常被用作检验回归方程中各个参数的显著性,而F检验则被用作检验整个回归关系的显著性。各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系。
在一元线性回归分析中,二者具有等价作用,因为二者都是对共同的假设——解释变量的参数等于零一一进行检验。