大学物理简明教程第三版课后习题答案 下载本文

内容发布更新时间 : 2024/11/20 20:24:37星期一 下面是文章的全部内容请认真阅读。

气阻力,求质点落地时相对抛射时的动量的增量.

解: 依题意作出示意图如题2-6图

题2-4图

在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,

而抛物线具有对y轴对称性,故末速度与x轴夹角亦为30,则动量的增量为

????p?mv?mv0o

?mv0由矢量图知,动量增量大小为

,方向竖直向下.

?F?(10?2t)i2-5 作用在质量为10 kg的物体上的力为N,式中t的单位是s,(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体

??6jm·s-1的物体,回答这两个问题. 和一个具有初速度

解: (1)若物体原来静止,则

??t?4??1?p1??Fdt??(10?2t)idt?56kg?m?si00,沿x轴正向, ????p1?v1??5.6m?s?1im???I1??p1?56kg?m?s?1i

?1若物体原来具有?6m?s初速,则

?tFt??????p0??mv0,p?m(?v0??dt)??mv0??Fdt0m0于是

,

????同理, ?v2??v1,I2?I1

0t??????p2?p?p0??Fdt??p111

这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.

(2)同上理,两种情况中的作用时间相同,即

I??(10?2t)dt?10t?t20t

2亦即 t?10t?200?0

解得t?10s,(t??20s舍去) 2-6 一颗子弹由枪口射出时速率为

v0m?s?1,当子弹在枪筒内被加速时,它

所受的合力为 F =(a?bt)N(a,b为常数),其中t以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.

解: (1)由题意,子弹到枪口时,有

F?(a?bt)?0,得

t?ab

(2)子弹所受的冲量

t1I??(a?bt)dt?at?bt202

t?ab代入,得

a2I?2b

(3)由动量定理可求得子弹的质量

Ia2m??v02bv0

2-7设

???F合?7i?6jN????.(1) 当一质点从原点运动到r??3i?4j?16km时,

?求F所作的功.(2)如果质点到r处时需0.6s,试求平均功率.(3)如果质点的质

量为1kg,试求动能的变化.

解: (1)由题知,

12

?F合为恒力,

∴ A合????????F?r?(7i?6j)?(?3i?4j?16k)

??21?24??45J (2)

P?A45??75w?t0.6

(3)由动能定理,?Ek?A??45J

2-8 如题2-18图所示,一物体质量为2kg,以初速度v0=3m·s-1从斜面A点处下滑,它与斜面的摩擦力为8N,到达B点后压缩弹簧20cm后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.

解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原 长处为弹性势能零点。则由功能原理,有

?frs?12?1?kx??mv2?mgssin37??2?2?

1mv2?mgssin37??frsk?212kx2

式中s?4.8?0.2?5m,x?0.2m,再代入有关数据,解得

k?1390N?m-1

题2-8图

再次运用功能原理,求木块弹回的高度h?

?frs??mgs?sin37o?12kx2

代入有关数据,得 s??1.4m, 则木块弹回高度

h??s?sin37o?0.84m

13

2-9 一个小球与一质量相等的静止小球发生非对心弹性碰撞,试证碰后两小球的运动方向互相垂直.

证: 两小球碰撞过程中,机械能守恒,有

11122mv0?mv12?mv2222

222v?v?v012即 ①

题2-9图(a) 题2-9图(b) 又碰撞过程中,动量守恒,即有 ??????mv0?mv1?mv2v亦即0?v1?v2 ②

由②可作出矢量三角形如图(b),又由①式可知三矢量之间满足勾股定理,???vv且以0为斜边,故知1与v2是互相垂直的.

2-10一质量为m的质点位于(x1,y1)处,速度为

???v?vxi?vyj, 质点受到一个

沿x负方向的力f的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩.

???解: 由题知,质点的位矢为r?x1i?y1j

??作用在质点上的力为f??fi

所以,质点对原点的角动量为

???L0?r?mv

?????(x1i?y1i)?m(vxi?vyj)??(x1mvy?y1mvx)k

作用在质点上的力的力矩为

???????M0?r?f?(x1i?y1j)?(?fi)?y1fk

14

2-11 哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为r1=8.75×1010m 时的速率是v1=5.46×104=9.08×102m·s-1

m·s-1,它离太阳最远时的速率是v2这时它离太阳的距离r2多少?(太阳位于椭圆的一个焦点。)

解: 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有

r1mv1?r2mv2

r1v18.75?1010?5.46?10412r2???5.26?10m2v9.08?102∴

?????1?v?i?6jm?str?4im2-12 物体质量为3kg,=0时位于, ,如一恒力

??f?5jN作用在物体上,求3秒后,(1)物体动量的变化;(2)相对z轴角动量的变

化.

解: (1)

??3???p??fdt??5jdt?15jkg?m?s?10

(2)解(一) x?x0?v0xt?4?3?7

115y?v0yt?at2?6?3???32?25.5j223

?????r?4ir1即 ,2?7i?25.5j 5vy?v0y?at?6??3?11vx?v0x?13

??????vv?i?6j即 11,2?i?11j

???????L?r?mv?4i?3(i?6j)?72k1∴ 11 ????????L2?r2?mv2?(7i?25.5j)?3(i?11j)?154.5k ????2?1?L?L?L?82.5kkg?m?s21∴

解(二) ∵∴

M?dzdt

0?t?t???L??M?dt??(r?F)dt0

15