内容发布更新时间 : 2024/12/27 8:35:49星期一 下面是文章的全部内容请认真阅读。
第一章 植物的水分生理
1.将植物细胞分别放在纯水和1mol/L蔗糖溶液中,细胞的渗透势、压力势、水势及细胞体积各会发生什么变化?
答:在纯水中,各项指标都增大;在蔗糖中,各项指标都降低。 2.从植物生理学角度,分析农谚“有收无收在于水”的道理。
答:水,孕育了生命。陆生植物是由水生植物进化而来的,水是植物的一个重要的“先天”环境条件。植物的一切正常生命活动,只有在一定的细胞水分含量的状况下才能进行,否则,植物的正常生命活动就会受阻,甚至停止。可以说,没有水就没有生命。在农业生产上,水是决定收成有无的重要因素之一。 水分在植物生命活动中的作用很大,主要表现在4个方面:
水分是细胞质的主要成分。细胞质的含水量一般在70~90%,使细胞质呈溶胶状态,保证了旺盛的代谢作用正常进行,如根尖、茎尖。如果含水量减少,细胞质便变成凝胶状态,生命活动就大大减弱,如休眠种子。
水分是代谢作用过程的反应物质。在光合作用、呼吸作用、有机物质合成和分解的过程中,都有水分子参与。
水分是植物对物质吸收和运输的溶剂。一般来说,植物不能直接吸收固态的无机物质和有机物质,这些物质只有在溶解在水中才能被植物吸收。同样,各种物质在植物体内的运输,也要溶解在水中才能进行。
水分能保持植物的固有姿态。由于细胞含有大量水分,维持细胞的紧张度(即膨胀),使植物枝叶挺立,便于充分接受光照和交换气体。同时,也使花朵张开,有利于传粉。
3.水分是如何跨膜运输到细胞内以满足正常的生命活动的需要的? 通过膜脂双分子层的间隙进入细胞。 膜上的水孔蛋白形成水通道,造成植物细胞的水分集流。植物的水孔蛋白有三种类型:质膜上的质膜内在蛋白、液泡膜上的液泡膜内在蛋白和根瘤共生膜上的内在蛋白,其中液泡膜的水孔蛋白在植物体中分布最丰富、水分透过性最大。 4.水分是如何进入根部导管的?水分又是如何运输到叶片的? 答:进入根部导管有三种途径:
质外体途径:水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。
跨膜途径:水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜。
共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。 这三条途径共同作用,使根部吸收水分。 根系吸水的动力是根压和蒸腾拉力。 运输到叶片的方式:蒸腾拉力是水分上升的主要动力,使水分在茎内上升到达叶片,导管的水分必须形成连续的水柱。造成的原因是:水分子的内聚力很大,足以抵抗张力,保证由叶至根水柱不断,从而使水分不断上升。
5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭? 保卫细胞细胞壁具有伸缩性,细胞的体积能可逆性地增大40~100%。 保卫细胞细胞壁的厚度不同,分布不均匀。双子叶植物保卫细胞是肾形,内壁厚、外壁薄,外壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。
保卫细胞的叶绿体在光下会形成蔗糖,累积在液泡中,降低渗透势,于是吸水膨胀,气孔张开;在黑暗条件下,进行呼吸作用,消耗有机物,升高了渗透势,于是失水,气孔关闭。
6.气孔的张开与保卫细胞的什么结构有关?
细胞壁具有伸缩性,细胞的体积能可逆性地增大40~100%。 细胞壁的厚度不同,分布不均匀。双子叶植物保卫细胞是肾形,内壁厚、外壁薄,外壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。 9.设计一个证明植物具有蒸腾作用的实验装置。 10.设计一个测定水分运输速度的实验。
第二章 植物的矿质营养
1.植物进行正常生命活动需要哪些矿质元素?如何用实验方法证明植物生长需这些元素?
答:分为大量元素和微量元素两种: 大量元素:C H O N P S K Ca Mg Si 微量元素:Fe Mn Zn Cu Na Mo P Cl Ni 实验的方法:使用溶液培养法或砂基培养法证明。通过加入部分营养元素的溶液,观察植物是否能够正常的生长。如果能正常生长,则证明缺少的元素不是植物生长必须的元素;如果不能正常生长,则证明缺少的元素是植物生长所必须的元素。 2.在植物生长过程中,如何鉴别发生缺氮、磷、钾现象;若发生,可采用哪些补救措施?
缺氮:植物矮小,叶小色淡或发红,分枝少,花少,子实不饱满,产量低。 补救措施:施加氮肥。
缺磷:生长缓慢,叶小,分枝或分蘖减少,植株矮小,叶色暗绿,开花期和成熟期都延迟,产量降低,抗性减弱。 补救措施:施加磷肥。
缺钾:植株茎秆柔弱易倒伏,抗旱性和抗寒性均差,叶色变黄,逐渐坏死,缺绿开始在老叶。
补救措施:施加钾肥。
4.植物细胞通过哪些方式来吸收溶质以满足正常生命活动的需要? 扩散
1.简单扩散:溶质从高浓度的区域跨膜移向浓度较低的邻近区域的物理过程。 2.易化扩散:又称协助扩散,指膜转运蛋白易让溶质顺浓度梯度或电化学梯度跨膜转运,不需要细胞提供能量。
离子通道:细胞膜中,由通道蛋白构成的孔道,控制离子通过细胞膜。 载体:跨膜运输的内在蛋白,在跨膜区域不形成明显的孔道结构。
1.单向运输载体:(uniport carrier)能催化分子或离子单方向地顺着电化学势梯度跨质膜运输。
2.同向运输器:(symporter)指运输器与质膜外的H结合的同时,又与另一分子或离子结合,同一方向运输。 3.反向运输器:(antiporter)指运输器与质膜外侧的H结合的同时,又与质膜内侧的分子或离子结合,两者朝相反的方向运输。
离子泵:膜内在蛋白,是质膜上的ATP酶,通过活化ATP释放能量推动离子逆化学
势梯度进行跨膜转运。
胞饮作用:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。 7.植物细胞通过哪些方式来控制胞质中的钾离子浓度? 钾离子通道:分为内向钾离子通道和外向钾离子通道两种。内向钾离子通道是控制胞外钾离子进入胞内;外向钾离子控制胞内钾离子外流。 载体中的同向运输器。运输器与质膜外侧的氢离子结合的同时,又与另一钾离子结合,进行同一方向的运输,其结果是让钾离子进入到胞内。 8.无土栽培技术在农业生产上有哪些应用? 可以通过无土栽培技术,确定植物生长所必须的元素和元素的需要量,对于在农业生产中,进行合理的施肥有指导的作用。 无土栽培技术能够对植物的生长条件进行控制,植物生长的速度快,可用于大量的培育幼苗,之后再栽培在土壤中。
10.在作物栽培时,为什么不能施用过量的化肥,怎样施肥才比较合理?
过量施肥时,可使植物的水势降低,根系吸水困难,烧伤作物,影响植物的正常生理过程。同时,根部也吸收不了,造成浪费。 合理施肥的依据:
根据形态指标、相貌和叶色确定植物所缺少的营养元素。 通过对叶片营养元素的诊断,结合施肥,使营养元素的浓度尽量位于临界浓度的周围。
测土配方,确定土壤的成分,从而确定缺少的肥料,按一定的比例施肥。 11.植物对水分和矿质元素的吸收有什么关系?是否完全一致? 关系:矿质元素可以溶解在溶液中,通过溶液的流动来吸收。 两者的吸收不完全一致
相同点:①两者都可以通过质外体途径和共质体途径进入根部。 ②温度和通气状况都会影响两者的吸收。 不同点:①矿质元素除了根部吸收后,还可以通过叶片吸收和离子交换的方式吸收矿物质。
②水分还可以通过跨膜途径在根部被吸收。
12.细胞吸收水分和吸收矿质元素有什么关系?有什么异同? 关系:水分在通过集流作用吸收时,会同时运输少量的离子和小溶质调节渗透势。 相同点:①都可以通过扩散的方式来吸收。②都可以经过通道来吸收。 不通电:①水分可以通过集流的方式来吸收。
②水分经过的是水通道,矿质元素经过的是离子通道。 ③矿质元素还可以通过载体、离子泵和胞饮的形式来运输。 13.自然界或栽种作物过程中,叶子出现红色,为什么?
缺少氮元素:氮元素少时,用于形成氨基酸的糖类也减少,余下的较多的糖类形成了较多的花色素苷,故呈红色。
缺少磷元素:磷元素会影响糖类的运输过程,当磷元素缺少时,阻碍了糖分的运输,使得叶片积累了大量的糖分,有利于花色素苷的形成。 缺少了硫元素:缺少硫元素会有利于花色素苷的积累。
自然界中的红叶:秋季降温时,植物体内会积累较多的糖分以适应寒冷,体内的可溶性糖分增多,形成了较多的花色素苷。 14.植株矮小,可能是什么原因?
缺氮:氮元素是合成多种生命物质所需的必要元素。