内容发布更新时间 : 2024/12/23 12:52:17星期一 下面是文章的全部内容请认真阅读。
第十三讲
构造与论证
教学目标
1. 掌握最佳安排和选择方案的组合问题. 2. 利用基本染色去解决相关图论问题.
知识点拨
各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.
组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.
例题精讲
模块一 最佳安排和选择方案
1
例题1
2
例题2
3
例题3
一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是 颜色(填“黑”或者“白”). 5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第 5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次? 有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989 块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:、 (1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?