基于神经网络ZISC的模式识别系统 下载本文

内容发布更新时间 : 2025/1/4 14:04:44星期一 下面是文章的全部内容请认真阅读。

基于神经网络ZISC的模式识别系统

摘要:首先介绍人工神经网络ANN实现技术的历史、现状和发展,着重分析RBF网络的原理及其建立在超大规模集成电路基础上的硬件神经网络的设计方法。然后,介绍一种新的硬件神经网络技术ZISC的工作原理和应用。最后,以ZISC036芯片为例,实现一个模式识别系统。

关键词:人工神经网络 ZISC 超大规模集成电路 径向基函数 模式识别 引言

当前对人工神经网络ANN的研究热潮源自Hopfield J.和McclellandJ.等人于20世纪80年代发表的论文,。Hopfield提出了激活函数为非线性的反馈网络,并将其成功地运用于组合优化问题;Mcclelland和

Rumelhart用多层前馈网的反向传播学习算法成功地解决了感知器不能解决的\异或\问题及其它的识别问题。他们的突破打消了此前人们由于简单线性神经网络感知功能

的有限而产生的,使ANN成为了新的研究热点。之后,新的网络结构和新的学习算法层出不穷,目前常见的都已达到几十种。在这些神经网络中,径向基函数RBF网络由于具有强大的矢量分类功能和快速的计算能力,在非线性函数逼近等方面,特别是模式识别领域,获得了广泛的应用,从而成为当前神经网络研究中的一个热点。

模式识别是人工智能经常遇到的问题之一。其主要的应用领域包括手写字符识别、自然语言理解、语音信号识别、生物测量以及图像识别等领域。这些领域的共同特点都是通过对对象进行特征矢量抽取,再按事先由学习样本建立的有代表性的识别字典,把特征矢量分别与字典中的标准矢量匹配,根据不同的距离来完成对象的分类。以识别手写数字为例,字典中有由学习样本建立的10个标准矢量,把从识别对象中抽取的特征矢量分别与这10个标准矢量匹配,矢量间距离最短的就说明别对象与这个标准矢量的分类最接近,进而识别出其表示的数字。 模式识别过程中,产生一个具有代表性的、

稳定且有效的特征矢量分类匹配策略,是补偿变形、提高识别率的有效途径,如何确定分类器是识别系统成功的关键。可以说,模式识别的本质就是分类,就是把特片空间中一个特定的点映射到一个适当的模式类别中。传统的模式识别分类都是基于串行处理的匹配策略:首先由学习样本建立识别基元的标准矢量识别字典,取取的特征矢量顺序与字典中的标准矢量计算区别得分;最后根据概率做出决策,输出识别结果。当模式类别很大时,识别速度会下降得很快,而近年来,用RBF网络解决这方面的问题得到了很好的效果。

理论模型要求发展神经网络型计算机来实现,但迄今 为止,这方面的工作限于条件还主要集中在传统计算机的软件模拟实现上。大多数学者认为,要使人工神经网络更快、更有效地解决更大规模的总是,关键在于其超大规模集成电路硬件的实现,即把神经元和连接制作在一块芯片上构成ANN。正是因为上述的原因,其中神经网络的VLSI设计方法近年来发展很快,硬件实现已成为