等差、等比数列以及数列求和专题 下载本文

内容发布更新时间 : 2024/11/5 17:33:33星期一 下面是文章的全部内容请认真阅读。

一、等差数列知识梳理

1.定义: 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.

数学语言表达式:an+1-an=d(n∈N*,d为常数),或an-an-1=d(n≥2,d为常数). 2.通项公式:若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d. 3.前n项和公式:Sn?na1?n(a1?an)n(n?1)其中n∈N*,a1为首项,d为公差, d?223.等差数列的常用性质:已知数列{an}是等差数列,Sn是{an}的前n项和. (1)通项公式的推广:an?am?(n?m)d(n,m?N*)

(2)若m+n=p+q(m,n,p,q∈N*),则有am?an?ap?aq。特别的,当m?n?2p时,am?an?2ap (3)等差数列{an}的单调性:当d>0时,{an}是递增数列;当d<0时,{an}是递减数列;当d=0时,{an}是常数列.

(4)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列. (5)若{an},{bn}是等差数列,则{pan?qbn}仍是等差数列. 4.与等差数列各项和相关的性质 (1)若{an}是等差数列,则{Sn1}也是等差数列,其首项与{an}的首项相同,公差为{an}的公差的。 n2(2)数列Sm,S2m?Sm,S3m?S2m…也是等差数列. (3)关于非零等差数列奇数项与偶数项的性质。 a.若项数为2n,则S偶?S奇?nd,S奇a?n。 S偶an?1S奇n。 ?S偶n?1 b.若项数为2n?1,则S偶?n(n?1)an,S奇?nan,S偶?S奇?an,(4)若两个等差数列{an},{bn}的前n项和分别为Sn,Tn,则5.等差数列的前n项和公式与函数的关系: (1)S?anS2n?1? bnT2n?1d2dSn=An2+Bn(A,B为常数). n?(a1?)n,数列{an}是等差数列?

22(2)在等差数列{an}中,a1>0,d<0,则Sn存在最大值;a1<0,d>0,则Sn存在最小值.

二、考点梳理

1

例1.(2016·全国Ⅰ卷)已知等差数列{an}前9项的和为27,a10=8,则a100=( ) A.100

例2.设等差数列{an}的前n项和为Sn,S3=6,S4=12,则S6=________.

练习1.(2015·全国Ⅰ卷)已知{an}是公差为1的等差数列,Sn为{an}的前n项和.若S8=4S4,则a10等于( ) 17A. 2

2.等差数列的性质

例1.(2015·全国Ⅱ卷)设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=( ) A.5

B.7

C.9

D.11

19

B.

2

C.10

D.12

B.99

C.98

D.97

例2.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9等于( ) A.63

例3.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( ) A.13

B.12

C.11

D.10

B.45

C.36

D.27

例4.(2015·广东卷)在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8=________.

例5.(2016·武汉调研)已知数列{an}是等差数列,a1+a7=-8,a2=2,则数列{an}的公差d等于( ) A.-1 B.-2

Sn2n-3a9a3例6.设等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意自然数n都有=,则+的值为Tn4n-3b5+b7b8+b4________.

3.等差数列与函数

例1.等差数列{an}的前n项和为Sn,已知a1=13,S3=S11,当Sn最大时,n的值是( ) A.5

C.-3 D.-4

B.6 C.7

2

D.8

例2.设等差数列{a}的前n项和为Sann,a1>0且69

a=,则当S511n取最大值时,n的值为( )

A.9

B.10

C.11

D.12

例3.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )

A.a1+a101>0 B.a2+a100<0 C.a3+a99=0 D.a51=51

例4.已知正项等差数列{an}的前n项和为Sn,若S12=24,则a6·a7的最大值为( ) A.36 B.6

C.4

D.2

例5.设{Sn}是公差为d(d?0)的无穷等差数列{an}的前n项和,则下列命题错误的是( ) A.若d<0,则数列{Sn}有最大项 B.若数列{Sn}有最大项,则d<0 C.若数列{Sn}为递增数列,则对任意n?N*,均有Sn>0 D.若对任意n?N*,均有Sn>0,则数列{Sn}为递增数列

例6.设等差数列{an}满足a2=7,a4=3,Sn是数列{an}的前n项和,则使得Sn>0成立的最大的自然数n是(A.9 B.10 C.11 D.12

二、 等比数列

知识梳理

3

)