内容发布更新时间 : 2024/12/24 3:17:13星期一 下面是文章的全部内容请认真阅读。
天津职业技术师范大学2011届本科生毕业设计
2.2温度传感器DS18B20
众所周知温度传感器的种类很多,比如AD590,LM35,DS18B20等,所以在设计温度电路的时候温度传感器的选择就尤为重要了。
本设计采用了温度传感器DS18B20,通过此传感器采集监控场所的温度,把此温度信号变成数字信号通过DS18B20的二管脚传给单片机的实现温度控制的作用。本设计设计的温度下限温度为30°C,上限温度为60°C当超出此范围就会报警。
DSl8B20[3]利用单总线的特点可以方便的实现多点温度的测量,DSI8B20直接把温度信息转换成相应的数字信号,可以轻松的组建传感器网络,系统的抗干扰性好、设计灵活、方便,而且适合于在恶劣的环境下进行现场温度测量,所以重点分析一下DSl8B20。温度传感器DS18B20的主要特性:
(1) 适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电;
(2) 独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯;
(3) DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温;
(4) DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内;
(5) 温范围-55°C~+125°C,在-10~+85°C时精度为±0.5°C; (6) 可编程的分辨率为9~12位,对应的可分辨温度分别为0.5°C、0.25°C、0.125°C和0.0625°C,可实现高精度测温;
(7) 在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快;
(8) 测量结果直接输出数字温度信号,以“一线总线”串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力;
(9) 负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。 DS18B20的外形及管脚排列如图2-2所示,1:GND为电源地;2:DQ为数字信号输入/输出端;3:VDD为外接供电电源输入端(在寄生电源接线方式时接地)。
图2-2 DS18B20管脚图
6
天津职业技术师范大学2011届本科生毕业设计
DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。
DS18B20的应用电路:DS18B20测温系统具有测温系统简单、测温精度高、连接方便、占用口线少等优点。DS18B20在寄生电源供电方式下,DS18B20从单线信号线上汲取能量:在信号线DQ处于高电平期间把能量储存在内部电容里,在信号线处于低电平期间消耗电容上的电能工作,直到高电平到来再给寄生电源(电容)充电。独特的寄生电源方式有三个好处:1)进行远距离测温时,无需本地电源 2)可以在没有常规电源的条件下读取ROM3)电路更加简洁,仅用一根I/O口实现测温要想使DS18B20进行精确的温度转换,I/O线必须保证在温度转换期间提供足够的能量,由于每个DS18B20在温度转换期间工作电流达到1mA,当几个温度传感器挂在同一根I/O线上进行多点测温时,只靠4.7K上拉电阻就无法提供足够的能量,会造成无法转换温度或温度误差极大。
DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图2-3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度[4]。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。
图2-3 DS18B20测温原理图
7
天津职业技术师范大学2011届本科生毕业设计
2.3 DS1302时钟芯片
现在流行的串行时钟电路很多,如DS1302[5]、 DS1307、PCF8485等。这些电路的接口简单、价格低廉、使用方便,被广泛地采用。本文介绍的实时时钟电路DS1302是DALLAS公司推出的一种高性能、低功耗、带RAM的实时时钟电路,它可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能,工作电压为2.5V~5.5V。采用三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM数据。DS1302是DS1202的升级产品,与DS1202兼容,但增加了主电源/后备电源双电源引脚,同时提供了对后备电源进行涓细电流充电的能力。DS1302 的控制字的最高有效位(位7)必须是逻辑1,如果它为0,则不能把数据写入DS1302中,位6如果为0,则表示存取日历时钟数据,为1表示存取RAM数据;位5至位1指示操作单元的地址;最低有效位(位0)如为0表示要进行写操作,为1表示进行读操作,控制字节总是从最低位开始输出。在控制指令字输入后的下一个SCLK时钟的上升沿时,数据被写入DS1302,数据输入从低位即位0开始。同样,在紧跟8位的控制指令字后的下一个SCLK脉冲的下降沿读出DS1302的数据,读出数据时从低位0位到高位7。DS1302有12个寄存器,其中有7个寄存器与日历、时钟相关,存放的数据位为BCD码形式。
DS1302的引脚排列,其中Vcc1为后备电源,VCC2为主电源。在主电源关闭的情况下,也能保持时钟的连续运行。DS1302由Vcc1或Vcc2两者中的较大者供电。当Vcc2大于Vcc1+0.2V时,Vcc2给DS1302供电。当Vcc2小于Vcc1时,DS1302由Vcc1供电。X1和X2是振荡源,外接32.768kHz晶振。RST是复位/片选线,通过把RST输入驱动置高电平来启动所有的数据传送。RST输入有两种功能:首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST提供终止单字节或多字节数据的传送手段。当RST为高电平时,所有的数据传送被初始化,允许对DS1302进行操作。如果在传送过程中RST置为低电平,则会终止此次数据传送,I/O引脚变为高阻态。上电运行时,在Vcc>2.0V之前,RST必须保持低电平。只有在SCLK为低电平时,才能将RST置为高电平。I/O为串行数据输入输出端(双向),。SCLK为时钟输入端。图2-4 DS1302的引脚功能图。
图2-4 DS1302封装图
8
天津职业技术师范大学2011届本科生毕业设计
3 系统硬件电路的设计
3.1系统总体硬件结构设计
根据系统设计功能的要求,本设计的硬件电路[6]包括单片机电路、液晶显示电路和温度传感电路、键盘电路。主控芯片使用51系列AT89S52单片机,时钟芯片使用DS18B20。电路系统构成图如图3-1所示。
键盘输入 温度测量 日历时钟 图3-1系统总体硬件结构
单片机 液晶显示 434键盘 3.2 AT89S52及其外围电路
AT89S52单片机为40引脚双列直插芯片,有四个I/O口P0,P1,P2,P3,MCS-51单片机共有4个8位的I/O口(P0、P1、P2、P3),每一条I/O线都能独立地作输出或输入。如图3-2所示。
P0口:P0口是一个8位漏极开路[7]的双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平。对P0端口写“1”时,引脚用作高阻抗输入。当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。在这种模式下,P0不具有内部上拉电阻。在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。程序校验时,需要外部上拉电阻。
P1口:P1口是一个具有内部上拉电阻的8位双向I/O口,p1输出缓冲器能驱动4个TTL逻辑电平。对P1端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(TTL)。
此外,P1.0和P1.1分别作定时器/计数器2的外部计数输入(P1.0/T2)和定时器/计数器2 的触发输入(P1.1/T2EX)。 在flash编程和校验时,P1口接收低8位地址字节。
引脚号第二功能:
P1.0 T2(定时器/计数器T2的外部计数输入),时钟输出
P1.1 T2EX(定时器/计数器T2的捕捉/重载触发信号和方向控制)
9
天津职业技术师范大学2011届本科生毕业设计
P1.5 MOSI(在系统编程用) P1.6 MISO(在系统编程用) P1.7 SCK(在系统编程用)
P2口:P2口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动
4个TTL 逻辑电平。对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。在访问外部程序存储器或用16位地址读取外部数据存储器时,P2 口送出高八位地址。在这种应用中,P2 口使用很强的内部上拉发送1。在使用 8位地址访问外部数据存储器时,P2口输出P2锁存器的内容。 在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。
P3口:P3口是一个具有内部上拉电阻的8位双向I/O口,p3 输出缓冲器能驱动4个TTL逻辑电平。对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入 口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。 P3口亦作为AT89S52特殊功能(第二功能)使用,如下表所示。在flash编程和校验时,P3口也接收一些控制信号。
端口引脚 第二功能: P3.0 RXD(串行输入口) P3.1 TXD(串行输出口) P3.2 INTO(外中断0) P3.3 INT1(外中断1) P3.4 TO(定时/计数器0) P3.5 T1(定时/计数器1) P3.6 WR(外部数据存储器写选通) P3.7 RD(外部数据存储器读选通)
此外,P3口还接收一些用于FLASH闪存编程和程序校验的控制信号。 RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将是单片机复位。
ALE/PROG[8]:当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。一般情况下,ALE仍以时钟振荡频率的1/6输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。对FLASH存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只有一条MOVX
10