内容发布更新时间 : 2024/11/16 0:31:12星期一 下面是文章的全部内容请认真阅读。
.
高中物理竞赛——动量、能量习题
一、动量定理还是动能定理?
物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。
模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。
先用动量定理推论解题。
取一段时间Δt ,在这段时间内,飞船要穿过体积ΔV = S·vΔt的空间,遭遇nΔV颗太空垃圾,使它们获得动量ΔP ,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。
F =
?P?M?vm?n?V?vm?nSv?t?v = = = = nmSv2 ?t?t?t?t如果用动能定理,能不能解题呢?
同样针对上面的物理过程,由于飞船要前进x = vΔt的位移,引擎推力F须做功W = Fx ,它对应飞船和被粘附的垃圾的动能增量,而飞船的ΔEk为零,所以:
W =
1ΔMv2 2Word 资料
.
12
(n m S·vΔt)v 21得到:F = nmSv2
2即:FvΔt =
两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由于I = Ft ,由此推出的F =
?P必然是飞船对垃圾的平均推力,再对飞船用平?t衡条件,F的大小就是引擎推力大小了。这个解没有毛病可挑,是正确的。
(学生活动)思考:如图1所示,全长L、总
质量为M的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v将绳子拉直。忽略地面阻力,试求手的拉力F 。
解:解题思路和上面完全相同。
Mv2答:
L二、动量定理的分方向应用
物理情形:三个质点A、B和C ,质量分别为m1 、m2和m3 ,用拉直且不可伸长的绳子AB和BC相连,静止在水平面上,如图2所示,AB和BC之间的夹角为(π-α)。现
对质点C施加以冲量I ,方向沿BC ,试求质点A开始运动的速度。
模型分析:首先,注意“开始运动”的理解,它指绳子恰被拉直,有作用力和冲量产生,但是绳子的方位尚未发生变化。其二,对三个质点均可用动量定理,
Word 资料
.
但是,B质点受冲量不在一条直线上,故最为复杂,可采用分方向的形式表达。其三,由于两段绳子不可伸长,故三质点的瞬时速度可以寻求到两个约束关系。
下面具体看解题过程——
绳拉直瞬间,AB绳对A、B两质点的冲量大小相等(方向相反),设为I1 ,BC绳对B、C两质点的冲量大小相等(方向相反),设为I2 ;设A获得速度v1(由于A受合冲量只有I1 ,方向沿AB ,故v1的反向沿AB),设B获得速度v(2由
??于B受合冲量为I1+I2,矢量和既不沿AB ,也
不沿BC方向,可设v2与AB绳夹角为〈π-β〉,
??如图3所示),设C获得速度v(3合冲量I+I2沿BC方向,故v3沿BC方向)。
对A用动量定理,有:
I1 = m1 v1 ①
???B的动量定理是一个矢量方程:I1+I2= m2v2 ,可化为两个分方向的标量式,
即:
I2cosα-I1 = m2 v2cosβ ② I2sinα= m2 v2sinβ ③ 质点C的动量定理方程为:
I - I2 = m3 v3 ④ AB绳不可伸长,必有v1 = v2cosβ ⑤ BC绳不可伸长,必有v2cos(β-α) = v3 ⑥
六个方程解六个未知量(I1 、I2 、v1 、v2 、v3 、β)是可能的,但繁复程度非同一般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤——
Word 资料