五年级奥数竞赛试题-质数、合数和分解质因数 下载本文

内容发布更新时间 : 2024/11/14 14:41:31星期一 下面是文章的全部内容请认真阅读。

五年级奥数竞赛试题

第二讲 质数、合数和分解质因数

一、基本概念和知识

1.质数与合数

一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。 要特别记住:1不是质数,也不是合数。 2.质因数与分解质因数

如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例:把30分解质因数。 解:30=2×3×5。

其中2、3、5叫做30的质因数。

又如12=2×2×3=22×3,2、3都叫做12的质因数。

二、例题

例1 三个连续自然数的乘积是210,求这三个数. 解:∵210=2×3×5×7 ∴可知这三个数是5、6和7。

例2 两个质数的和是40,求这两个质数的乘积的最大值是多少? 解:把40表示为两个质数的和,共有三种形式: 40=17+23=11+29=3+37。

∵17×23=391>11×29=319>3×37=111。 ∴所求的最大值是391。

答:这两个质数的最大乘积是391。

例3 自然数123456789是质数,还是合数?为什么? 解:123456789是合数。

因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。

例4 连续九个自然数中至多有几个质数?为什么?

解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。

如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。

综上所述,连续九个自然数中至多有4个质数。

例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。 解:∵5=5,7=7,6=2×3,14=2×7,15=3×5, 这些数中质因数2、3、5、7各共有2个,所以如把14

(=2×7)放在第一组,那么7和6(=2×3)只能放在第二组,继而15(=3×5)只能放在第一组,则5必须放在第二组。 这样14×15=210=5×6×7。

这五个数可以分为14和15,5、6和7两组。

例6 有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三数的乘积是42560.求这三个自然数。

分析 先大概估计一下,30×30×30=27000,远小于42560.40×40×40=64000,远大于42560.因此,要求的三个自然数在30~40之间。 解:42560=26×5×7×19 =25×(5×7)×(19×2) =32×35×38(合题意)

要求的三个自然数分别是32、35和38。 例7 有3个自然数a、b、c.已知a×b=6,b×c=15, a×c=10.求a×b×c是多少? 解:∵6=2×3,15=3×5,10=2×5。 (a×b)×(b×c)×(a×c)

=(2×3)×(3×5)×(2×5) ∴a2×b2×c2=22×32×52 ∴(a×b×c)2=(2×3×5)2 a×b×c=2×3×5=30

在例7中有a2=22,b2=32,c2=52,其中22=4,32=9,52=25,像4、9、25这样的数,推及一般情况,我们把一个自然数平方所得到的数叫做完全平方数或叫做平方数。

如.12=1,22=4,32=9,42=16,…,112=121,122=144,…其中1,4,9,16,…,121,144,…都叫做完全平方数.

下面让我们观察一下,把一个完全平方数分解质因数后,各质因数的指数有什么特征。

例如:把下列各完全平方数分解质因数: 9,36,144,1600,275625。 解:9=32 36=22×32 144=32×24 1600=26×52 275625=32×54×72

可见,一个完全平方数分解质因数后,各质因数的指数均是偶数。 反之,如果把一个自然数分解质因数之后,各个质因数的指数都是偶数,那么这个自然数一定是完全平方数。

如上例中,36=62,144=122,1600=402,275625=5252。

例8 一个整数a与1080的乘积是一个完全平方数.求a的最小值与这个平方数。

分析 ∵a与1080的乘积是一个完全平方数,

∴乘积分解质因数后,各质因数的指数一定全是偶数。 解:∵1080×a=2×3×5×a,

又∵1080=23×33×5的质因数分解中各质因数的指数都是奇数, ∴a必含质因数2、3、5,因此a最小为2×3×5。 ∴1080×a=1080×2×3×5=1080×30=32400。 答:a的最小值为30,这个完全平方数是32400。 例9 问360共有多少个约数?

3

3