内容发布更新时间 : 2025/1/9 6:48:08星期一 下面是文章的全部内容请认真阅读。
?y1?z1??y2??z1?z2?z3?1z4?2 ?,
?y?z?1z34?32?y?z4?4则原二次型的标准形为
222 f?x1,x2,x3,x4???z1?z2?z3?32z4, 4且非退化线性替换为
1?x?z?z?z?z4123?12?1?x??z?z?z?z4?2123 ?2,
?1x?z?z4?332???x4?z4相应的替换矩阵为
??1???1 T????0??0且有
1?1?1??2?11?1??2?, 1?01??2?001?0??100?0?10?。
3?00??4?00??1??0 T?AT??0??0?222 (6)已知f?x1,x2,x3,x4??x1?2x2?x4?4x1x2?4x1x3?2x1x4
?2x2x3?2x2x4?2x3x4, 由配方法可得
f?x1,x2,x3,x4??x12?2x1?2x2?2x3?x4???2x2?2x3?x4?
222 ??2x2?2x3?x4??2x2?x4?2x2x3?2x2x4?2x3x4
2??
??x1?2x2?2x3?x4?于是可令
231?1?2?2?x2?x3?x4???x3?x4?,
22?2?2?y1?x1?2x2?2x3?x4?31??y2?x2?x3?x4 ?, 22?y3?x3?x4???y4?x4则原二次型的标准形为
f?y1?2y2?且非退化线性替换为
2212y3, 2?x1?y1?2y2?y3?y4?3??x2?y2?y3?y4 ?, 2?x3?y3?y4???x4?y4故替换矩阵为
?1?21?3?01?2 T??1?00?000?且有
?1??1??, ?1?1??001200??0?。 0??0???10??0?2 T?AT??00??00?2222 (7)已知f?x1,x2,x3,x4??x1?x2?x3?x4?2x1x2?2x2x3?2x3x4,
由配方法可得
22 f?x1,x2,x3,x4??x2 ?2x2?x1?x3???x1?x3??2x1x3?2x3x4?x42222 ??x1?x2?x3??2x1x3?x3 ?2x3x4?x4?x322 ??x1?x2?x3???x3?x4??2x1x3?x3?x12?x12
222 ?x1??x1?x2?x3???x3?x4???x1?x3?,
222????于是可令
?y1?x1?y?x?x?x?2123 ?,
?y3?x3?x4??y4?x1?x3则原二次型的标准形为
f?y1?y2?y2?y4, 且非退化线性替换为
2222?x1?y1?x?y?y?224 ?,
x??y?y14?3??x4?y1?y3?y4相应的替换矩阵为
?1??0 T???1??1?且有
0??10?1?,
001??01?1??0??100?。 ?010?00?1??0000?1??0 T?AT??0??0? (Ⅱ)把上述二次型进一步化为规范形,分实系数、复系数两种情形;并写出所作的非退化线性替换。
解 1)已求得二次型
f?x1,x2,x3???4x1x2?2x1x3?2x2x3 的标准形为
222 f??y1?4y2?3y3,
且非退化线性替换为
11?x?y?y?y32?1212?11? ?x2?y1?y2?y3,
22??x3?y3??(1) 在实数域上,若作非退化线性替换
?y1?z3?1? ?y2?z2,
2???y3?z1可得二次型的规范形为
222 f?z1?z2?z3。
(2) 在复数域上,若作非退化线性替换
?y1?iz1?1? ?y2?z2,
2???y3?z1可得二次型的规范形为
222 f?z1?z2?z3。
2)已求得二次型
222 f?x1,x2,x3??x1?2x1x2?2x2?4x2x3?4x3
的标准形为
f?y1?y2, 且非退化线性替换为
22?x1?y1?y2?2y3? ?x2?y2?2y3,
?x?y3?3故该非退化线性替换已将原二次型化为实数域上的规范形和复数域上的规范形 f?y1?y2。 3)已求得二次型
22 f?x1,x2,x3??x1?3x2?2x1x2?2x1x3?6x2x3
22的标准形为
f?y1?y2, 且非退化线性替换为
2213?x?y?y?y3112?22?11? ?x2?y2?y3,
22??x3?y3??
(1) 在实数域上,上面所作非退化线性替换已将二次型化为规范形,即 f?y1?y2。
(2) 在复数域上,若作非退化线性替换
22?y1?z1? ?y2?iz2。
?y?z3?3可得二次型的规范形为
f?z1?z2。
(3) 已求得二次型
f?x1,x2,x3,x4??8x1x2?2x3x4?2x2x3?8x2x4 的标准形为
2222 f??2y1?2y2?2y3?8y4,
22且非退化线性替换为
153?x?y?y??121424y3?y4??x2?y2?y3 ?,
?x3?y2?y3?1?x4??y1?y42?(1) 在实数域上,若作非退化线性替换
??y1???y2??? ??y??3??y?4??可得二次型的规范形为
1212121z4z2,
z3z1222222 f?z1?z2?z3?z2。
(2)在复数域上,若作非退化线性替换