2017Öп¼ÊýѧһÂÖ¸´Ï°½Ì°¸ÍêÕû°æ ÏÂÔØ±¾ÎÄ

ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2025/11/10 9:59:58ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£

µÚ3¿Î Õûʽ

֪ʶµã

´úÊýʽ¡¢´úÊýʽµÄÖµ¡¢Õûʽ¡¢Í¬ÀàÏî¡¢ºÏ²¢Í¬ÀàÏȥÀ¨ºÅÓëÈ¥À¨ºÅ·¨Ôò¡¢ÃݵÄÔËËã·¨Ôò¡¢ÕûʽµÄ¼Ó¼õ³Ë³ý³Ë·½ÔËËã·¨Ôò¡¢³Ë·¨¹«Ê½¡¢ÕýÕûÊýÖ¸ÊýÃÝ¡¢ÁãÖ¸ÊýÃÝ¡¢¸ºÕûÊýÖ¸ÊýÃÝ¡£ ´ó¸ÙÒªÇó

1¡¢ Á˽â´úÊýʽµÄ¸ÅÄ»áÁмòµ¥µÄ´úÊýʽ¡£Àí½â´úÊýʽµÄÖµµÄ¸ÅÄÄÜÕýÈ·µØÇó³ö´úÊýʽ

掙术

2¡¢ Àí½âÕûʽ¡¢µ¥Ïîʽ¡¢¶àÏîʽµÄ¸ÅÄ»á°Ñ¶àÏîʽ°´×ÖĸµÄ½µÃÝ£¨»òÉýÃÝ£©ÅÅÁУ¬Àí½âͬ

ÀàÏîµÄ¸ÅÄ»áºÏ²¢Í¬ÀàÏ

3¡¢ ÕÆÎÕͬµ×ÊýÃݵij˷¨ºÍ³ý·¨¡¢Ãݵij˷½ºÍ»ýµÄ³Ë·½ÔËËã·¨Ôò£¬²¢ÄÜÊìÁ·µØ½øÐÐÊý×ÖÖ¸Êý

ÃݵÄÔËË㣻

2

4¡¢ ÄÜÊìÁ·µØÔËÓó˷¨¹«Ê½£¨Æ½·½²î¹«Ê½£¬Íêȫƽ·½¹«Ê½¼°£¨x+a£©(x+b)=x+(a+b)x+ab£©½ø

ÐÐÔËË㣻

5¡¢ ÕÆÎÕÕûʽµÄ¼Ó¼õ³Ë³ý³Ë·½ÔËË㣬»á½øÐÐÕûʽµÄ¼Ó¼õ³Ë³ý³Ë·½µÄ¼òµ¥»ìºÏÔËËã¡£ ¿¼²éÖØµã

1£®´úÊýʽµÄÓйظÅÄ

(1)´úÊýʽ£º´úÊýʽÊÇÓÉÔËËã·ûºÅ(¼Ó¡¢¼õ¡¢³Ë¡¢³ý¡¢³Ë·½¡¢¿ª·½)°ÑÊý»ò±íʾÊýµÄ×ÖĸÁ¬½á¶ø³ÉµÄʽ×Ó£®µ¥¶ÀµÄÒ»¸öÊý»òÕßÒ»¸ö×ÖĸҲÊÇ´úÊýʽ£®

(2)´úÊýʽµÄÖµ£»ÓÃÊýÖµ´úÌæ´úÊýʽÀïµÄ×Öĸ£¬¼ÆËãºóËùµÃµÄ½á¹ûp½Ð×ö´úÊýʽµÄÖµ£® Çó´úÊýʽµÄÖµ¿ÉÒÔÖ±½Ó´úÈë¡¢¼ÆË㣮Èç¹û¸ø³öµÄ´úÊýʽ¿ÉÒÔ»¯¼ò£¬ÒªÏÈ»¯¼òÔÙÇóÖµ£®

(3)´úÊýʽµÄ·ÖÀà 2£®ÕûʽµÄÓйظÅÄî

(1)µ¥Ïîʽ£ºÖ»º¬ÓÐÊýÓë×ÖĸµÄ»ýµÄ´úÊýʽ½Ð×öµ¥Ïîʽ£®

¶ÔÓÚ¸ø³öµÄµ¥Ïîʽ£¬Òª×¢Òâ·ÖÎöËüµÄϵÊýÊÇʲô£¬º¬ÓÐÄÄЩ×Öĸ£¬¸÷¸ö×ÖĸµÄÖ¸Êý·Ö±ðÊÇʲô¡£

(2)¶àÏîʽ£º¼¸¸öµ¥ÏîʽµÄºÍ£¬½Ð×ö¶àÏîʽ

¶ÔÓÚ¸ø³öµÄ¶àÏîʽ£¬Òª×¢Òâ·ÖÎöËüÊǼ¸´Î¼¸Ïîʽ£¬¸÷ÏîÊÇʲô£¬¶Ô¸÷ÏîÔÙÏñ·ÖÎöµ¥ÏîʽÄÇÑùÀ´·ÖÎö

(3)¶àÏîʽµÄ½µÃÝÅÅÁÐÓëÉýÃÝÅÅÁÐ

°ÑÒ»¸ö¶àÏîʽ¼¼Ä³Ò»¸ö×ÖĸµÄÖ¸Êý´Ó´óÁÐСµÄ˳ÐòÅÅÁÐÆðÀ´£¬½Ð×ö°ÑÕâ¸ö¶àÏîʽ°´Õâ¸ö×Öĸ½µÃÝÅÅÁÐ

°Ñ¡ª¸ö¶àÏîʽ°´Ä³Ò»¸ö×ÖĸµÄÖ¸Êý´ÓСµ½´óµÄ˳½ïÅÅÁÐÆðÀ´£¬½Ð×ö°ÑÕâ¸ö¶àÏîʽ¼¼Õâ¸ö×ÖĸÉýÃÝÅÅÁУ¬

¸ø³öÒ»¸ö¶àÏîʽ£¬Òª»á¸ù¾ÝÒªÇó¶ÔËü½øÐнµÃÝÅÅÁлòÉýÃÝÅÅÁУ® (4)ͬÀàÏî

Ëùº¬×ÖĸÏàͬ£¬²¢ÇÒÏàͬ×ÖĸµÄÖ¸ÊýÒ²·Ö±ðÏàͬµÄÏ½Ð×öͬÀàÇ꣮

Òª»áÅжϸø³öµÄÏîÊÇ·ñͬÀàÏ֪µÀͬÀàÏî¿ÉÒԺϲ¢£®¼´ax?bx?(a?b)x ÆäÖеÄX¿ÉÒÔ´ú±íµ¥ÏîʽÖеÄ×Öĸ²¿·Ö£¬´ú±íÆäËûʽ×Ó¡£ 3£®ÕûʽµÄÔËËã (1)ÕûʽµÄ¼Ó¼õ£º¼¸¸öÕûʽÏà¼Ó¼õ£¬Í¨³£ÓÃÀ¨ºÅ°Ñÿһ¸öÕûʽÀ¨ÆðÀ´£¬ÔÙÓüӼõºÅÁ¬½Ó£®Õûʽ¼Ó¼õµÄÒ»°ã²½ÖèÊÇ£º

9

(i)Èç¹ûÓöµ½À¨ºÅ£®°´È¥À¨ºÅ·¨ÔòÏÈÈ¥À¨ºÅ£ºÀ¨ºÅǰÊÇ¡°Ê®¡±ºÅ£¬°ÑÀ¨ºÅºÍËüÇ°ÃæµÄ¡°+¡±ºÅÈ¥µô¡£À¨ºÅÀï¸÷Ïî¶¼²»±ä·ûºÅ£¬À¨ºÅǰÊÇ¡°Ò»¡±ºÅ£¬°ÑÀ¨ºÅºÍËüÇ°ÃæµÄ¡°Ò»¡±ºÅÈ¥µô£®À¨ºÅÀï¸÷Ïî¶¼¸Ä±ä·ûºÅ£® (ii)ºÏ²¢Í¬ÀàÏ ͬÀàÏîµÄϵÊýÏà¼Ó£¬ËùµÃµÄ½á¹û×÷ΪϵÊý£®×ÖĸºÍ×ÖĸµÄÖ¸Êý²»±ä£® (2)ÕûʽµÄ³Ë³ý£ºµ¥ÏîʽÏà³Ë(³ý)£¬°ÑËüÃǵÄϵÊý¡¢Ïàͬ×Öĸ·Ö±ðÏà³Ë(³ý)£¬¶ÔÓÚÖ»ÔÚÒ»¸öµ¥Ïîʽ(±»³ýʽ)ÀﺬÓеÄ×Öĸ£¬ÔòÁ¬Í¬ËüµÄÖ¸Êý×÷Ϊ»ý(ÉÌ)µÄÒ»¸öÒòʽÏàͬ×ÖĸÏà³Ë(³ý)ÒªÓõ½Í¬µ×ÊýÃݵÄÔËËãÐÔÖÊ£º

am?an?am?n(m,nÊÇÕûÊý)a?a?amnm?n(a?0,m,nÊÇÕûÊý)

¶àÏîʽ³Ë(³ý)ÒÔµ¥Ïîʽ£¬ÏȰÑÕâ¸ö¶àÏîʽµÄÿһÏî³Ë(³ý)ÒÔÕâ¸öµ¥Ïîʽ£¬ÔÙ°ÑËùµÃµÄ»ý(ÉÌ)Ïà¼Ó£®

¶àÏîʽÓë¶àÏîʽÏà³Ë£¬ÏÈÓÃÒ»¸ö¶àÏîʽµÄÿһÏî³ËÒÔÁíÒ»¸ö¶àÏîʽµÄÿһÏÔÙ°ÑËùµÃµÄ»ýÏà¼Ó£®

Óöµ½ÌØÊâÐÎʽµÄ¶àÏîʽ³Ë·¨£¬»¹¿ÉÒÔÖ±½ÓË㣺

(x?a)(x?b)?x2?(a?b)x?ab,

(a?b)(a?b)?a2?b2,(a?b)?a?2ab?b,(a?b)(a2?ab?b2)?a3?b3.22

(3)ÕûʽµÄ³Ë·½

µ¥Ïîʽ³Ë·½£¬°ÑϵÊý³Ë·½£¬×÷Ϊ½á¹ûµÄϵÊý£¬Ôٰѳ˷½µÄ´ÎÊýÓë×ÖĸµÄÖ¸Êý·Ö±ðÏà³ËËùµÃµÄÃÝ×÷Ϊ½á¹ûµÄÒòʽ¡£

µ¥ÏîʽµÄ³Ë·½ÒªÓõ½Ãݵij˷½ÐÔÖÊÓë»ýµÄ³Ë·½ÐÔÖÊ£º

(am)n?amn(m,nÊÇÕûÊý),(ab)?ab(nÊÇÕûÊý)nnn

¶àÏîʽµÄ³Ë·½Ö»Éæ¼°

(a?b)2?a2?2ab?b2,(a?b?c)?a?b?c?2ab?2bc?2ca.2222

¿¼²éÖØµãÓë³£¼ûÌâÐÍ

1¡¢ ¿¼²éÁдúÊýʽµÄÄÜÁ¦¡£ÌâÐͶàΪѡÔñÌ⣬È磺 ÏÂÁи÷ÌâÖУ¬ËùÁдúÊý´íÎóµÄÊÇ£¨ £©

£¨A£© ±íʾ¡°±ÈaÓëbµÄ»ýµÄ2±¶Ð¡5µÄÊý¡±µÄ´úÊýʽÊÇ2ab£­5 1

£¨B£© ±íʾ¡°aÓëbµÄƽ·½²îµÄµ¹Êý¡±µÄ´úÊýʽÊÇ2

a£­b£¨C£© ±íʾ¡°±»5³ýÉÌÊÇa£¬ÓàÊýÊÇ2µÄÊý¡±µÄ´úÊýʽÊÇ5a+2 a

£¨D£© ±íʾ¡°ÊýµÄÒ»°ëÓëÊýµÄ3±¶µÄ²î¡±µÄ´úÊýʽÊÇ £­3b

2

2¡¢ ¿¼²éÕûÊýÖ¸ÊýÃݵÄÔËËã¡¢ÁãÖ¸Êý¡£ÌâÐͶàΪѡÔñÌ⣬ÔÚʵÊýÔËËãÖÐÒ²ÓгöÏÖ£¬È磺 ÏÂÁи÷ʽÖУ¬ÕýÈ·µÄÊÇ£¨ £©

336326336326

£¨A£©a+a=a (B)(3a)=6a (C)a?a=a (D)(a)=a ÕûʽµÄÔËË㣬ÌâÐͶàÑù£¬³£¼ûµÄÌî¿Õ¡¢Ñ¡Ôñ¡¢»¯¼òµÈ¶¼ÓС£

10

¿¼²éÌâÐÍ£º

1.ÏÂÁи÷ÌâÖУ¬ËùÁдúÊý´íÎóµÄÊÇ£¨ £©

£¨E£© ±íʾ¡°±ÈaÓëbµÄ»ýµÄ2±¶Ð¡5µÄÊý¡±µÄ´úÊýʽÊÇ2ab£­5 1

£¨F£© ±íʾ¡°aÓëbµÄƽ·½²îµÄµ¹Êý¡±µÄ´úÊýʽÊÇ2

a£­b£¨G£© ±íʾ¡°±»5³ýÉÌÊÇa£¬ÓàÊýÊÇ2µÄÊý¡±µÄ´úÊýʽÊÇ5a+2 a

£¨H£© ±íʾ¡°Êý£áµÄÒ»°ëÓëÊý£âµÄ3±¶µÄ²î¡±µÄ´úÊýʽÊÇ £­3b

2

2.ÏÂÁи÷ʽÖУ¬ÕýÈ·µÄÊÇ£¨ £©

336326336326

£¨A£©a+a=a (B)(3a)=6a (C)a?a=a (D)(a)=a 3.ÓôúÊýʽ±íʾ£º£¨1£©aµÄ¾ø¶ÔÖµµÄÏà·´ÊýÓëbµÄºÍµÄµ¹Êý£»

£¨2£©xƽ·½ÓëyµÄºÍµÄƽ·½¼õÈ¥xƽ·½ÓëyµÄÁ¢·½µÄ²î£» §Ýab4.£­ µÄϵÊýÊÇ £¬ÊÇ ´Îµ¥Ïîʽ£»

12

5.¶àÏîʽ3x£­1£­6x£­4xÊÇ ´Î Ïîʽ£¬ÆäÖÐ×î¸ß´ÎÏîÊÇ £¬³£ÊýÏîÊÇ £¬Èý´ÎÏîϵÊýÊÇ £¬°´xµÄ½µÃÝÅÅÁÐ £»

7xy+72-4y2x

6.Èç¹û3mnºÍ-4mnÊÇͬÀàÏÔòx= ,y= £»ÕâÁ½¸öµ¥ÏîʽµÄ»ýÊǣߣߡ£ 7.ÏÂÁÐÔËËã½á¹ûÕýÈ·µÄÊÇ£¨ £©

3235213633-2-1

¢Ù2x-x=x ¢Úx?(x)=x ¢Û(-x)¡Â(-x)=x ¢Ü(0.1)?10=10 £¨A£©¢Ù¢Ú £¨B£©¢Ú¢Ü £¨C£©¢Ú¢Û £¨D£©¢Ú¢Û¢Ü ¿¼²éѵÁ·£º

11xyx+y

1¡¢´úÊýʽa£­1£¬0, ,x+ £¬£­ £¬m£¬ ,2 ¨C3bÖе¥ÏîʽÊÇ £¬¶àÏî

3ay42

2

2

2

5

3

23

ʽÊÇ £¬·ÖʽÊÇ ¡£ xyz

2¡¢£­ ÊÇ ´Îµ¥Ïîʽ£¬ËüµÄϵÊýÊÇ ¡£

3

3¡¢¶àÏîʽ3yx£­1£­6yx£­4yxÊÇ ´Î Ïîʽ£¬ÆäÖÐ×î¸ß´ÎÏîÊÇ £¬³£ÊýÏîÊÇ £¬Èý´ÎÏîϵÊýÊÇ £¬°´xµÄ½µÃÝÅÅÁÐΪ ¡£

4¡¢ÒÑÖªÌÝÐεÄÉϵ×Ϊ4a£­3b£¬Ïµ×Ϊ2a+b,¸ßΪ3a+b¡£ÊÔÓú¬a,bµÄ´úÊýʽ±íʾ³öÌÝÐεÄÃæ»ý£¬²¢Çó³öµ±a=5,b=3ʱÌÝÐεÄÃæ»ý¡£ 5¡¢ÏÂÁмÆËãÖдíÎóµÄÊÇ£¨ £©

3223982332333

(A)(£­ab)¡¤(£­ab)=-ab (B) (£­ab)¡Â(£­ab)=ab

322366322331818

(C)(£­a)¡¤(£­b)=ab (D)[(£­a)¡¤(£­b)]=£­ab 13412323

6¡¢¼ÆË㣺3£ø£ù¡¤£¨£­ £ø£ù£©¡Â£¨£­ £ø£ù£©

26

322

7£®ÒÑÖª´úÊýʽ3£ù£­2£ù£«6µÄֵΪ8£¬Çó´úÊýʽ £ù£­£ù£«1µÄÖµ

2£á£«£â

8£®Éè£á£­£â£½£­2£¬Çó £­£á£âµÄÖµ¡£

27¡¢ÀûÓù«Ê½¼ÆË㣺

2

2

2

25

3

2

3

1211121221212

(1) ( a£­ b)( £­ b£­ a) (2) (a£­ ) (a+ )(a+ )

3443242

22

(3)(x+y£­z)(x£­y+z)£­(x+y+z)(x£­y£­z) (4)[(x+6x+9) ¡Â(x+3)](x-3x+9)

11

222

(5)(a£­4)(a£­2a+4)(a+2a+4) (6)101¡Á99 ½âÌâÖ¸µ¼£º

15 £­2x

1¡¢´úÊýʽ ÊÇ£¨ £©

3

£¨A£©Õûʽ £¨B£©·Öʽ £¨C£©µ¥Ïîʽ £¨D£©ÎÞÀíʽ

7-mn+31£­4m2n

2¡¢Èç¹û3xyºÍ£­4xyÊÇͬÀàÏÄÇôm,nµÄÖµÊÇ£¨ £©

(A)m=£­3,n=2 (B) m=2,n=£­3 (C) m=£­2,n=3 (D) m=3,n=£­2 12

3¡¢ÕýÈ·ÐðÊö´úÊýʽ (2a-b)µÄÊÇ£¨ £©

3£¨A£© £áÓë2µÄ»ý¼õÈ¥£âƽ·½Óë3µÄÉÌ £¨B£©£áÓë2µÄ»ý¼õÈ¥£âµÄƽ·½µÄ²î³ýÒÔ3

11

£¨C£©£áÓë2±¶¼õÈ¥£âƽ·½µÄ²îµÄ £¨D£©£áµÄ2±¶¼õÈ¥£âƽ·½ 33

4¡¢Óó˷¨¹«Ê½¼ÆËã:

22222

(1) (£­2a£­3b) (2) (a£­3b+2c) (3) (2y£­z)[2y(z+2y)+z]

5¡¢¼ÆËã:

222

(1)(c£­2b+3a)(2b+c£­3a) (2)(a£­b)(a+b)£­2ab(a£­b)

3242

6¡¢ÓÃÊúʽ¼ÆËã: (5£­4x+5x+2x)¡Â(3+x£­2x)

322

7¡¢ÒÑÖª6x£­9x+mx+nÄܱ»6x£­x+4Õû³ý£¬Çóm,nµÄÖµ£¬²¢Ð´³ö±»³ýʽ¡£

222

8¡¢ÒÑÖª£ø£«£ù£½4£¬£ø£ù£½3£¬Çó£º3£ø£«3£ù£»£¨£ø£­£ù£©

¹®¹ÌÌá¸ß

23443

1¡¢ ÈôÒ»¸ö¶àÏîʽ¼ÓÉÏ2x£­x£­5£­3xµÃ3x£­5x£­3£¬ÔòÕâ¸ö¶àÏîʽÊÇ £»

n2

2¡¢ Èô3x£­(m£­1)x+1ΪÈý´Î¶þÏîʽ£¬Ôòm£­nµÄֵΪ £»

3¡¢ ÓôúÊýʽ±íʾ£¬m,nÁ½ÊýµÄºÍ³ýÕâÁ½ÊýµÄƽ·½µÄ²î £» x£­3

ÓÃÓïÑÔÐðÊö´úÊýʽ £»

6

4.Èô³ýʽ=x+2£¬ÉÌʽ=2x+1£¬Óàʽ=£­5£¬Ôò±»³ýʽ= £»

33

5¡¢µ±x=£­2ʱ£¬ax+bx£­7=5,Ôòx=2ʱ£¬ax+bx£­7= £»

2

£á£­£â£½£­2£¬£á£­£ã£½£­3£¬Ôò£¨£â£­£ã£©£­3£¨£â£­£ã£©£«1£½

2

6¡¢Èç¹û(a+b£­x)µÄ½á¹ûÖв»º¬µÄxÒ»´ÎÏÄÇôa,b±ØÂú×㣨 £© (A) a=b (B)a=0,b=0 (C)a=£­b (D)ÒÔÉ϶¼²»¶Ô 7¡¢£­[a£­(b£­c)]È¥À¨ºÅÕýÈ·µÄÊÇ£¨ £©

(A) £­a£­b+c (B)£­a+b£­c (C)£­a£­b£­c (D)£­a+b+c

8¡¢ÉèPÊǹØÓÚxµÄÎå´Î¶àÏîʽ£¬QÊǹØÓÚxµÄÈý´Î¶àÏîʽ£¬Ôò£¨ £© £¨A£©P+QÊǹØÓڵİ˴ζàÏîʽ £¨B£©P-QÊǹØÓڵĶþ´Î¶àÏîʽ Q

£¨C£©P¡¤QÊǹØÓڵİ˴ζàÏîʽ £¨D£© ÊǹØÓڵĶþ´Î¶àÏîʽ

P9.ÏÂÁмÆËãÖÐÕýÈ·µÄÊÇ£¨ £©

12

32