内容发布更新时间 : 2024/12/27 19:10:15星期一 下面是文章的全部内容请认真阅读。
《高等数学(经济数学1)》课程
习题集
西南科技大学成人、网络教育学院 版权所有
习题
【说明】:本课程《高等数学(经济数学1)》(编号为01014)共有单选题,填空题1,计算题等多种试题类型,其中,本习题集中有[]等试题类型未进入。
一、单选题
1. 幂函数、指数函数、对数函数、三角函数和反三角函数统称( )
A、函数 B、初等函数 C、基本初等函数 D、复合函数
?ex,x?02. 设f(x)??, 当a=( )时,f(x)在(??,??)上连续
?a?x,x?0A、0 B、1 C、2 D、3
3. 由函数y?eu,u?x2复合而成的函数为( )
A、y?e B、x?e C、y?xe D、y?ex
x2x2x24. 函数f(x)的定义域为[1,3],则函数f(lnx)的定义域为( )
A、[e,e3] B、[e,3] C、[1,3] D、[1,e3]
y2?2x5. 函数z?2的间断点是( )
y?2x2A、(x,y)y?2x?0 B、x?
??1 2
C、x?0 D、y?2
6. 不等式x?5?1的区间表示法是( )
第 1 页 共 35 页
A、(-4,6) B、(4,6) C、(5,6) D、(-4,8)
x3?37. 求lim?( )
x?2x?3A、3 B、2 C、5 D、-5
8. 求limx2?3x?4?( )
x?0A、1 B、2 C、3 D、4
9. 若f(x)的定义域为[0,1],则
f(x2)的定义域为( )
A、[-1,1] B、(-1,1) C、[0,1] 0]
10. 求limet?1t??2t?( ) A、?(1e2?1) B、11112(e2?1) C、?2(e2?1) D11. 求limsin?xx?0x?( ) A、0 B、1 C、?2 12. 求limx??(1?1x)x?( )
A、1e B、1 C、0 13. 求limx?1?1x?0x?( ) A、1 B、
12 C、13 14. 已知f(x)?1?x1?x,求f(0)=( ) A、1 B、2 C、3 15. 求f(x)?9?x2的定义域( )
A、[-1,1] B、(-1,1) C、[-3,3] D16. 求函数y?2?x?x?1的定义域( )
A、[1,2] B、(1,2) C、[-1,2] D第 2 页 共 35 页
、[-1,、?12(1e?1) D、?
D、e
D、14 D、4
、(-3,3)
、(-1,2)
D17. 判断函数f(x)?3x2?5的奇偶性( )
A、奇函数 B、偶函数 C、奇偶函数 D、非奇非偶函数
18. 求y?3x?1的反函数( )
A、y?11x?1x?1 B、y?x?1 C、y? D、33y?x?13 19. 求极限xlim???(x2?x?x)的结果是( )
A、0 B、
12 C、? D20. 极限lim1x?02?3x的结果是( )。
A、0 B、不存在 C、
15 D21. 设y?x?sinx,则y?=( )
A、x(sinx2x?cosx) B、x(cosx2x?sinx) C、x(sinx2x?cosx) D、x(cosx2x?sinx) 22. 设y?(2x?5)4,则y?=( )
A、4(2x?5)3 B、8(2x?5)3 C、4(2x?5)4 D23. 设y?sintet则y??=( ) A、?2e?tsint B、2e?tsint C、2e?tcost D24. limx?1x?13x?1?( )
A、1 B、2 C、3 D25. 设f(x)?x(x?1)(x?2)?(x?n), 则f(n?1)(x)=( )
A、(n?1)! B、n?1 C、0 D第 3 页 共 35 页
3、不存在 、12 、8(2x?5)4
、?2e?tcost
、4
、1