基于ANSYS的机翼振动模态分析 下载本文

内容发布更新时间 : 2025/1/9 6:48:04星期一 下面是文章的全部内容请认真阅读。

机翼模型的振动模态分析

摘要:本文在ANSYS13.0平台上,采用有限元方法对机翼模态进行了建模和数值分析,为

机翼翼型的设计和改进提供基础数据。

1. 引言

高空长航时飞机近年来得到了世界的普遍重视。由于其对长航时性能的要求,这种飞机的机翼往往采用非常大的展弦比,且要求结构重量非常低。大展弦比和低重量的要求,往往使得这类结构受载时产生一系列气动弹性问题,这些问题构成飞行器设计和其它结构设计中的不利因素,解决气动弹性问题历来为飞机设计中的关键技术。颤振的发生与机翼结构的振动特性密切相关。通过对机翼模态的分析,可以获得机翼翼型在各阶频率下的模态,得出振动频率与应变之间的关系,从而可以改进设计,避免或减小机翼在使用过程中因为振动引起的变形。

同时,通过实践和实际应用,可以掌握有限元分析的方法和步骤,熟悉ANSYS有限元分析软件的建模和网格划分技巧和约束条件的确定,为以后进一步的学习和应用打下基础。

2. 计算模型

一个简化的飞机机翼模型如图1所示,机翼的一端固定在机体上,另一端为悬空自由端,该机翼沿延翼方向为等厚度,有关的几何尺寸见图1。

图1.机翼模型简图

在分析过程采用直线段和样条曲线简化描述机翼的横截面形状,选取5个keypoint,A(0,0,0)为坐标原点,同时为翼型截面的尖点;B(0.05,0,0)为下表面轮廓截面直线上一点,同时是样条曲线BCDE的起点;D(0.0475,0.0125,0)为样曲线上一点。C(0.0575,0.005,0)为样条曲线曲率最大点,样条曲线的顶点;点E(0.025,0.00625,0)与点A构成直线,斜率为0.25。通过点A、B做直线和点B、C、D、E作样条曲线就构成了截面的形状,如图2。沿Z方向拉伸,就得到机翼的实体模型,如图1。

图2.机翼截面模型

机翼材料的常数为: 弹性模量E =0.26GPa, 泊松比μ =0.3,密度

该问题属于动力学中的模态分析问题。在计算结构固有动力特性时,我们仅仅是计算少数低阶模态,因此可以选择较少的网格,以提高计算的效率同时不影响计算的准确性。同时,计算固有特性时网格划分趋于采用较均匀的钢格形式。这是因为固有频率和振型主要取决于结构质量分布和刚度分布,不存在类似应力集中的现象,采用均匀网格可使结构刚度矩阵和质量矩阵的元素不致相差太大,可减小数值计算误差。

考虑到映射网格划分方式对模型的要求比较高,建模时就必须将模型建成具有规则的体和面组成的模型。相反,自由网格对模型的要求不高,划分简单省时省力。选择面单元PLANE42和体单元SOLID45进行划分网格求解。面网格选择单元尺寸为0.00625,体网格划分时按单元数目控制网格划分,选择单元数目为10。网格划分结果如图3.图4.

图3.机翼截面有限元网格划分

图4.机翼有限元网格划分

对模型施加约束,由于机翼一端固定在机身上所以在机翼截面的一端所有节点施加位移和旋转约束,如图5.

图5.对机翼模型施加约束

3. 有限元处理结果及分析