SPSS因子分析经典案例 下载本文

内容发布更新时间 : 2024/11/19 23:15:34星期一 下面是文章的全部内容请认真阅读。

SPSS因子分析经典案例

因子分析已经被各行业广泛应用,各种案例琳琅满目,以前在百度空间发表过相关文章,是以每到4至6月,这些文章总会被高校毕业生扒拉一遍,也总能收到各种魅惑的留言,因此,有必要再次发布这经典案例以飨读者。

什么是因子分析?

因子分析又称因素分析,传统的因子分析是探索性的因子分析,即因子分析是基于相关关系而进行的数据分析技术,是一种建立在众多的观测数据的基础上的降维处理方法。其主要目的是探索隐藏在大量观测数据背后的某种结构,寻找一组变量变化的共同因子。 因子分析能做什么?

人的心理结构具有层次性,即分为外显和内隐。但是作为具有同一性的个体来说,内隐的方面总是和外显的方面相互作用,内隐方面制约着外显特征。所以我们经常说,一个人的内在自我会在相当程度上决定他的外在行为特征,表现为某些行为倾向具有高度的一致性或相关性。 反过来说,我们可以通过对个体进行系统的观察和测量,从一组高度相关的行为倾向(可观测)中,探索到某种稳定的内在心理结构(潜存在),这就是因子分析所能做的。 具体来说主要应用于:

(1)个体的综合评价:按照综合因子得分对case进行排序;

(2)调查问卷效度分析:问卷所列问题作为输入变量,通过KMO、因子特征值贡献率、因子命名等判断调查问卷架构质量;

(3)降维处理,结果再利用:因子得分作为变量,进行 聚类 或其他分析。

案例描述:

高中大家都读过吧,那是一个以成绩论英雄的时代,理科王子、文科小生是时代标签。为什么我们会将数学、物理、化学归并为理科,其他的归并为文科,有没有数据支持?今天我们将用科学的方法找到答案。

100个学生数学、物理、化学、语文、历史、英语成绩如下表(部分),请你来评价他们。

这是一个有趣的案例,你可以客观的观测到每一科目的成绩,但你可以直接看到理科、文科的情况吗?6个科目的成绩是我们观测到的外在表现,隐藏在其中的公共因子你找到了吗?如果我们针对6科目做降维处理,会得到什么结果,拭目以待。

SPSS分析过程

6科目成绩作为6个原始变量,利用SPSS进行因子分析,具体步骤请参照各 因子分析教程 ,默认亦可,不在讨论范围之内。 公共因子命名:解释的清楚、有无实际意义

经过SPSS降维,由公因子方差表看出,默认提取两个公因子,能够解释差异的81%,似乎暗合文科和理科。

我们试图通过旋转后进行因子的命名与解释,这似乎一点也不难,因子1与语文、历史、英语三科最相关,均在0.8相关度以上,因子2与数学、

物理、化学相关,也基本达到0.8以上,这正好与我们经常说的文科和理科不谋而合,没有理由不这样命名。

因子得分排序:综合评价

为公共因子合理命名之后,因子分析并没有结束,一般可以将因子得分作为变量,用于后续分析步骤。

本例:100名学生按照文科和理科因子得分进行排序,可以用(语文+历时+英语)及(数学+物理+化学)平均值验证因子得分排序是否合理,同时,也可以观测因子得分为负值时是否影响排序。