高等数学公式 下载本文

内容发布更新时间 : 2025/1/8 2:42:55星期一 下面是文章的全部内容请认真阅读。

高等数学公式

导数公式:

(tgx)??sec2x(arcsinx)??12(ctgx)???csc2x1?x(secx)??secx?tgx(arccosx)???1(cscx)???cscx?ctgx1?x2(ax)??axlna(arctgx)??11?x2(logx)??1axlna(arcctgx)???11?x2基本积分表:

?tgxdx??lncosx?C?dx?ctgxdx?lnsinx?Ccos2x??sec2xdx?tgx?C?secxdx?lnsecx?tgx?C?dx??csc2sin2xxdx??ctgx?C?cscxdx?lncscx?ctgx?C?secx?tgxdx?secx?C?dx?cscx?ctgxdx??cscx?Ca2?x2?1aarctgxa?Cxdx?ax?dx?alna?Cx2?a2?12alnx?ax?a?C?shxdx?chx?C?dx1a?a2?x2?x2alna?x?C?chxdx?shx?C?dxxa2?x2?arcsina?C?dxx2?a2?ln(x?x2?a2)?C??22Inn??sinxdx??cosnxdx?n?1nIn?200?x2?a2dx?xx2?a2?a2ln(x?x2?a222)?C?x2x2?a2dx?x2?a2?alnx?x222?a2?C?a2?x2dx?x22a2x2a?x?2arcsina?C三角函数的有理式积分:

sinx?2u1?u2, cosx?1?u21?u2, u?tgx2du2, dx?1?u2

ex?e?x双曲正弦:shx?2limsinxx?0x?1ex?e?x双曲余弦:chx?2lim1x??(1?x)x?e?2.718281828459045...:thx?shxex?e?x双曲正切chx?ex?e?xarshx?ln(x?x2?1)archx??ln(x?x2?1)arthx?12ln1?x1?x一些初等两个重要极限:

函数:

三角函数公式: ·诱导公式:

函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α sin cos tg -tgα ctgα ctg -ctgα tgα -ctgα ctgα tgα -ctgα ctgα -sinα cosα cosα cosα sinα sinα -sinα -ctgα -tgα -cosα -tgα -sinα -cosα tgα -cosα -sinα ctgα -cosα sinα -sinα cosα sinα cosα -tgα tgα -ctgα -tgα

·和差角公式: ·和差化积公式:

sin(???)?sin?cos??cos?sin?cos(???)?cos?cos??sin?sin?tg(???)?tg??tg?1?tg??tg?ctg??ctg??1ctg(???)?ctg??ctg?sin??sin??2sin???22??????sin??sin??2cossin22??????cos??cos??2coscos22??????cos??cos??2sinsin22cos???

·倍角公式:

sin2??2sin?cos?cos2??2cos2??1?1?2sin2??cos2??sin2?ctg2??1ctg2??2ctg?2tg?tg2??1?tg2?

·半角公式:

sin3??3sin??4sin3?cos3??4cos3??3cos?3tg??tg3?tg3??1?3tg2?sintg?2????1?cos??1?cos?            cos??2221?cos?1?cos?sin??1?cos?1?cos?sin???  ctg????1?cos?sin?1?cos?21?cos?sin?1?cos?abc???2R ·余弦定理:c2?a2?b2?2abcosC sinAsinBsinC?2

·正弦定理:

·反三角函数性质:arcsinx??2?arccosx   arctgx??2?arcctgx

高阶导数公式——莱布尼兹(Leibniz)公式:

(uv)(n)k(n?k)(k)??Cnuvk?0nn(n?1)(n?2)n(n?1)?(n?k?1)(n?k)(k)?u(n)v?nu(n?1)v??uv?????uv???uv(n)2!k!中值定理与导数应用:

拉格朗日中值定理:f(b)?f(a)?f?(?)(b?a)f(b)?f(a)f?(?)柯西中值定理:?F(b)?F(a)F?(?)曲率:

当F(x)?x时,柯西中值定理就是拉格朗日中值定理。弧微分公式:ds?1?y?2dx,其中y??tg?平均曲率:K???.??:从M点到M?点,切线斜率的倾角变化量;?s:MM?弧长。?sy????d?M点的曲率:K?lim??.

23?s?0?sds(1?y?)直线:K?0;1半径为a的圆:K?.a定积分的近似计算:

b矩形法:?f(x)?abb?a(y0?y1???yn?1)nb?a1[(y0?yn)?y1???yn?1]n2b?a[(y0?yn)?2(y2?y4???yn?2)?4(y1?y3???yn?1)]3n

梯形法:?f(x)?ab抛物线法:?f(x)?a定积分应用相关公式: