内容发布更新时间 : 2024/12/27 2:39:43星期一 下面是文章的全部内容请认真阅读。
双容水箱液位模糊串级控制系统的设计与MATLAB仿真
薛松柏1
1.宿迁学院机电工程系,
摘要:液位控制是工业控制中的一个重要问题,针对液位控制过程中存在大滞后、时变、非线性的特点,为适应复杂系统的控制要求,人们研制了种类繁多的先进的智能控制器,模糊PID控制器便是其中之一。模糊PID控制结合了PID控制算法和模糊控制方法的优点,可以在线实现PID参数的调整,使控制系统的响应速度快,过渡过程时间大大缩短,超调量减少,振荡次数少,具有较强的鲁棒性和稳定性,在模糊控制中扮演着十分重要的角色。本文先对双容水箱进行数学建模,将模糊控制和PID控制相结合,设计出了双容水箱液位模糊PID串级控制系统。然后参照经验选取了合适的模糊控制规则和隶属度函数,设计了模糊控制器,建立了模糊控制表,供在线模糊控制查询使用。最后应用MATLAB对双容水箱液位控制对象的常规PID串级控制系统和模糊PID串级控制系统进行了仿真比较,说明了模糊PID串级控制系统相对于常规PID串级控制系统,对于此设计具有明显的优越性。
关键字:PID控制;模糊控制;模糊PID串级控制;MATLAB仿真
0 引言
双容水箱液位控制系统,由于阀门的非线性、传输管道的纯滞后,用常规的PID控制不能取得满意的控制效果,而且双容水箱理论上的数学模型是很难建立的,所以用常规的PID控制更难取得满意的控制效果。为此将模糊控制引入到双容水箱液位控制系统中来,根据人工控制的经验总结模糊控制的规律,用模糊控制和PID控制对双容水箱进行串级控制,可以取得满意的控制效果。本文设计了双容水箱液位的模糊PID串级控制,用模糊控制和PID控制组成的双容水箱液位串级控制系统通过控制双容水箱的下液位,改善其控制性能,并借助MATLAB进行仿真,比较常规PID串级控制和模糊PID串级控制的性能。
1 双容水箱液位系统的组成
双容水箱串级液位控制系统结构图如图2.1所示。它由控制器、电动调节阀、上水箱、下水箱和液位变送器等组成。电动调节阀用于调节上水箱的进水量大小,液位变送器用于检测上水箱和下水箱的液位。控制器的输出量用于控制调节阀的开度。 图1.1 串级控制系统图 其串级控制系统方框图如图1.2所示
图1.2双容水箱液位串级控制系统方框图 串级控制系统是由两个或以上的控制器串联连接组成复杂控制系统。其中前面控制器的输出作为后面控制器的设定值,最后一个控制器的输出控制调节阀。在控制过程中,副回路起“粗调”作用,主回路起“细调”作用。串级控制系统增加了副回
路,使系统的控制性能有了较大的提高,因为系统增加了包含二次扰动的副回路。主要表现在:改善了被控过程的动态特性;能及时克服进入副回路的各种二次扰动;提高了系统的抗干扰能力;提高了系统的鲁棒性;具有一定的自适应能力。
2 液位模糊控制器的结构
模糊控制器最基本的形式是一种称为“查询表”的模糊控制器,这种控制器将模糊控制规则最终转化为一个查询表又称控制表,存储在计算机中供在线查询使用。这种形式的模糊控制器具有结构简单,使用方便的特点,因此又称为简单模糊控制器。这种设计思想是其他形式模糊控制器的基础。
图2.1液位模糊控制方框图
如图2.1,SP是液位设定值,Hl是液位测量值,e=SP一Hl是液位变化,△e为液位变化率,u为控制量,Ke——偏差量化因子,Kec——偏差变化率量化因子,Ku清晰化因子。该系统的设计和工作过程如下。
2.1 液位模糊控制器的设计
本文是以模糊控制器作为主控制器的串级液位控制系统,现结合液位控制系统设计一个合理的二维模糊控制器。 2.2 量化因子的选择
通过现场观察,测取误差及其变化率的大致范围,分别记为
??e,e?、??ec,ec?分别称为误差及误
差变化输入变量的基本论域,其中e和ec表示误差及其变化率大小精确量;确定调节阀的动作范围,记为
??U,?U?,称为输出变量的基本论域,其中的U
表示执行机构的动作范围大小的精确量。这些量可以先大致确定,根据实际可再作适当的调整。 模糊控制器中的误差E的模糊子集论域为: 其中n称为将在0e范围内连续变化的误差离散
化后分成的档数,它将构成论域E的元素,本文取
n1?6。在实际的控制系统中,误差的变化一般不
是论域E中的元素,在这种情况下,需要通过量化
因子进行论域的转换。其中的量化因子Ke定义为: Ke=n/e
一旦量化因子选择后,系统的任何误差都可以量化到E的论域之中。从上面的量化因子定义可见,
一旦给定论域E,即选定了误差变量的基本论域
??e?e?的量化等级n之后,量化因子Ke的取值大
小可使基本论域
??e?e?的大小发生不同程度的缩
小或放大变化,即当Ke大时,基本论域??e?e?缩
小,而当Ke小时,基本论域
??e?e?放大,这时对
应的误差控制灵敏度将降低。
同理,若选定的误差变化率的模糊子集的基本论域为:
其对应的误差变化率的量化因子Kec定义为: Kec=n/ec
其中的误差变化率的量化因子Kec与误差的量化因子Ke具有相同的特性。本文的误差变化率的量化分档数n=6。对于系统控制量的变化u,其控制量的变化基本论域为
??u?u?,基于量化因子的概念,
定义控制量的量化因子: Ku=u/n
式中n为控制量基本论域
??u?u?的量化分档
数。在本系统中量化分档数n=6。由上式可见,比例因子Ku与量化等级数n之积便是实际加到控制对象的控制量。如果比例因子Ku取得过大,则会造成被控过程阻尼下降;相反,若取得过小,则将导致被控过程得响应特性迟缓。
2.3 输入输出论域与空间的模糊分割
在大量的控制领域问题中,消除被控对象或被控过程的输出偏差问题,是相当普遍的一大类问题。仿照人控制这类问题的经验,设计的模糊控制器的结构,一般选择的输入变量为误差E和误差变化率EC,输出变量为控制量U,因此,它是一个二维的模糊控制器。对误差E、误差变化率EC和控制量U的模糊集及其论域定义如下:
?NL,NM,NS,ZO,PS,PM,PL?
E的模糊集为: E和EC的论域为:
U的论域为:
量化在线整定时要求论域为离散,因此对论域采用均匀量化,量化后的E、EC、U的隶属度函数表如表2.1所示。
表2.1 E、EC、U量化表
2.4 隶属度函数
图2.2函数描述的隶属度函数
在设计一个语言变量的隶属函数时,必须考虑的因素:隶属函数的个数、形状、位置分布和相互重叠程度等。根据三角隶属函数确定误差E、误差的变化EC以及控制量U的各模糊子集赋值表如表2.2所示。
表2.2 数值方法描述的隶属度
2.5 建立控制规则
基于IF一THEN(条件一结果)的产生式规则结构简单、易于修改、易于掌握,是目前模糊规则主要表示方法,其中,“条件”为控制量的要求,“结果”为控制执行量。模糊控制规则应遵循原则:当误差大或较大时,模糊控制量的选择以消除误差为主;当误差较小,而误差变化率较大时,模糊控制量的选择以系统的稳定为主,防止系统超调。模糊控制的规则一般是从实际经验中提取出来的,带有很大的主观性,这里所选用的控制规则一方面根据专家和熟练操作人员的经验,另一方面根据对过程动态特性的分析来建立。所选择的模糊控制规则如下: 1、IF E=NB and △E=NB THEN U=PB; 2、IF E=NB and △E=NM THEN U=PB; 3、IF E=NB and △E=NS THEN U=PB; 4、IF E=NB and △E=ZO THEN U=PB; 5、IF E=NM and △E=NB THEN U=PB; 6、IF E=NM and △E=NM THEN U=PB; 7、IF E=NM and △E=NS THEN U=PB; 8、IF E=NM and △E=ZO THEN U=PB; 9、IF E=NS and △E=NL THEN U=PM; 10、IF E=NS and △E=NM THEN U=PM; 11、IF E=ZO and △E=NB THEN U=PM; 12、IF E=ZO and △E=NM THEN U=PM; 13、IF E=PS and △E=NB THEN U=PM; 14、IF E=NB and △E=PS THEN U=PM;
15、IF E=NM and △E=PS THEN U=PM; 16、IF E=PS and △E=NM THEN U=PS 17、IF E=NS and △E=NS THEN U=PS; 18、IF E=ZO and △E=NS THEN U=PS; 19、IF E=NS and △E=ZO THEN U=PS; 20、IF E=ZO and △E=ZO THEN U=ZO; 21、IF E=PB and △E=NB THEN U=ZO; 22、IF E=PB and △E=NM THEN U=ZO; 23、IF E=PM and △E=NB THEN U=ZO;
24、IF E=PM and △E=NM THEN U=ZO; 25、IF E=PS and △E=NS THEN U=ZO; 26、IF E=NB and △E=PB THEN U=ZO; 27、IF E=NB and △E=PM THEN U=ZO; 28、IF E=NM and △E=PB THEN U=ZO; 29、IF E=NM and △E=PM THEN U=ZO; 30、IF E=NS and △E=PS THEN U=ZO; 31、IF E=NS and △E=PM THEN U=NS; 32、IF E=PS and △E=ZO THEN U=NS; 33、IF E=PS and △E=PS THEN U=NS; 34、IF E=ZO and △E=PS THEN U=NS; 35、IF E=PS and △E=PB THEN U=NM; 36、IF E=PS and △E=PM THEN U=NM; 37、IF E=ZO and △E=PB THEN U=NM; 38、IF E=ZO and △E=PM THEN U=NM; 39、IF E=NS and △E=PB THEN U=NM; 40、IF E=PB and △E=NS THEN U=NM; 41、IF E=PM and △E=NS THEN U=NM; 42、IF E=PB and △E=PB THEN U=NB; 43、IF E=PB and △E=PM THEN U=NB; 44、IF E=PB and △E=PS THEN U=NB; 45、IF E=PB and △E=ZO THEN U=NB; 46、IF E=PM and △E=PB THEN U=NB; 47、IF E=PM and △E=PM THEN U=NB; 48、IF E=PM and △E=PS THEN U=NB; 49、IF E=PM and △E=ZO THEN U=NB;
上述模糊控制规则是根据专家知识和操作经验而得到的,也可以表示成以下的表格形式:
表2.3 U的模糊控制规则
2.6 建立模糊控制表
模糊控制规则表包含有49条条件语句,对应就有49个模糊关系,它们之间是或的关系。模糊关系的计算如下:
这样可计算得到49个模糊关系Ri(i?1,2,348,49),通过49个模糊关系的“并”