内容发布更新时间 : 2024/12/23 7:33:26星期一 下面是文章的全部内容请认真阅读。
密度0.936~0.964g/cm3,热变形温度(0.46MPa)85℃,熔点130~136℃。
UHMWPE因相对分子质量高而具有其他塑料无可比拟的优异性能,如耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能,广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于超高相对分子质量聚乙烯优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用,而且,超高相对分子质量聚乙烯耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。超高相对分子质量聚乙烯纤维的复合材料在军事上已用作装甲车辆的壳体、雷达的防护罩壳、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。
由于超高相对分子质量聚乙烯熔融状态的粘度高达108Pa·s,流动性极差,其熔体流动速率几乎为零,所以很难用一般的机械加工方法进行加工。近年来,通过对普通加工设备的改造,已使超高相对分子质量聚乙烯由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其他特殊方法的成型。
6.茂金属聚乙烯
茂金属聚乙烯(mPE)是近年来迅速发展的一类新型高分子树脂,其相对分子质量分布窄,分子链结构和组成分布均一,具有优异的力学性能和光学性能,已被广泛应用于包装、电气绝缘制品等。 1.1.3聚乙烯的成型加工
PE的熔体粘度比PVC低,流动性能好,不需加入增塑剂已具有很好的成型加工性能。前文已介绍了各类聚乙烯可采用的成型加工方法,下面主要介绍在成型过程中应注意的几个问题。
①聚乙烯属于结晶性塑料,吸湿小,成型前不需充分干燥,熔体流动性极好,流动性对压力敏感,成型时宜用高压注射,料温均匀,填充速度快,保压充分。不宜用直接浇口,以防收缩不均,内应力增大。注意选择浇口位置,防止产生缩孔和变形。
②PE的热容量较大,但成型加工温度却较低,成型加工温度的确定主要取决于相对分子质量、密度和结晶度。LDPE在180℃左右, HDPE在220℃左右,最高成型加工温度一般不超过280℃。
③熔融状态下,PE具有氧化倾向,因而,成型加工中应尽量减少熔体与空气的接触及在高温下的停留时间。
④PE的熔体粘度对剪切速率敏感,随剪切速率的增大下降得较多。当剪切速率超过临界值后,易出现熔体破裂等流动缺陷。
⑤制品的结晶度取决于成型加工中对冷却速率的控制。不论采取快速冷却还是缓慢冷却,应尽量使制品各部分冷却速率均匀一致,以免产生内应力,降低制品的力学性能。
⑥收缩范围和收缩值大(一般成型收缩率为1.5%~5.0%),方向性明显,易变形翘曲,冷却速度宜慢,模具设冷料穴,并有冷却系统。
⑦软质塑件有较浅的侧凹槽时,可强行脱模。 1.1.4聚乙烯的改性
聚乙烯属非极性聚合物,与无机物、极性高分子相容性弱,因此其功能性较差,采用改性可提高PE的耐热老化性、高速加工性、冲击强度、粘接性、生物相容性等性质。常用的改性方法包括物理改性和化学改性。
1.物理改性
物理改性是在PE基体中加入另一组分(无机组分、有机组分或聚合物等)的一种改性方法。常用的方法有增强改性、共混改性、填充改性。
(1)增强改性 增强改性是指填充后对聚合物有增强效果的改性。加入的增强剂有玻璃纤维、碳纤维、石棉纤维、合成纤维、棉麻纤维、晶须等。自增强改性也属于增强改性的一种。
①自增强改性。所谓自增强就是使用特殊的加工成型方法,使得材料内部组织形成伸直链晶体,材料内部大分子晶体沿应力方向有序排列,材料的宏观强度得到大幅度提高,同时分子链有序排列将使结晶度提高,从而使材料的强度进一步提高,由于所形成的增强相与基体相的分子结构相同,因而不存在外增强材料中普遍存在的界面问题。如采用超高相对分子质量聚乙烯(UHMPE)纤维增强LDPE,在加热加压成型的条件下,可以形成良好的界面,最大限度发挥基体和纤维的强度。
②纤维增强改性。纤维增强聚合物基复合材料由于具有比强度高、比刚度高等优点而得到广泛应用。如采用经KH-550偶联剂处理的长玻璃纤维(LGF)与PE复
合制备的PE/LGF复合材料,当LGF加入量为3O%(质量分数)、长度约为35mm时,复合材料的拉伸强度和冲击强度分别为52.5MPa和52kJ/m。
③晶须改性。晶须的加入能够大幅度提高HDPE材料的力学性能,包括短期力学性能及耐长期蠕变性能。晶须对HDPE材料的增强作用主要归因于它们之间的良好界面粘接,同时刚性的晶须则能够承担较大的外界应力使复合材料的模量得到提高。
④纳米粒子增强改性。少量无机刚性粒子填充PE可同时起到增韧与增强的作用。如将表面处理过的纳米SiO2粒子填充mLLDPE-LDPE,SiO2纳米粒子均匀分散于基材中,与基材形成牢固的界面结合,当填充质量分数为2%时,拉伸强度、断裂伸长率分别提高了13.7MPa和174.9%。
(2)共混改性 共混改性主要目的是改善PE的韧性、冲击强度、粘接性、高速加工性等各种缺陷,使其具有较好的综合性能。共混改性主要是向PE基体中加入另一种聚合物,如塑料类、弹性体类等聚合物,以及不同种类的PE之间进行共混。
①PE系列的共混改性。单一组分的PE往往很难满足加工要求,而通过不同种类PE之间的共混改性可以获得性能优良的PE材料。如通过LDPE与LLDPE共混,解决了LDPE因大量添加阻燃剂和抗静电剂等助剂造成力学性能急剧降低的问题;LLDPE与HDPE共混后可以提高产品的综合性能。
②PE与弹性体的共混改性。弹性体具有低的表面张力、较强的极性、突出的增韧作用,因此与PE共混后,既能保持PE的原有性能,同时也可以制备出具有综合优良性能的PE。如LDPE-聚烯烃弹性体(POE)共混物,当POE的质量分数为3O%时,共混体系的拉伸强度达到最大值,为21.5 MPa。
③PE与塑料的共混改性。聚乙烯具有良好的韧性,但制品的强度和模量较低,与工程塑料等共混可提高复合体系的综合力学性能。但PE和这类高聚物的界面问题也是影响其共混物性能的主要原因,因此通常需要加入界面相容剂以提高共混物的力学性能。
(3)填充改性 填充改性是在PE基质中加入无机填料或有机填料,一方面可以降低成本达到增重的目的,另一方面可提高PE的功能性,如电性能、阻燃性能等,但同时对复合材料的力学性能和加工性能带来一定程度的影响。
无论是无机填料还是有机填料,填料与PE基体的相容性和界面粘接强度是PE填充改性必须面临的问题,而PE是非极性化合物,与填料相容性差,因此,必须对填料进行表面处理。填料的表面处理一般采用物理或化学方法进行处理,在填料表面包覆一层类似于表面活性剂的过渡层,起“分子桥”的作用,使填料与基体树脂间形成一个良好的粘接界面。常用的填料表面处理技术有:表面活性剂或偶联剂处理技术、低温等离子体技术、聚合填充技术和原位乳液聚合技术等。
PE中填充木粉、淀粉、废纸粉、滑石粉、碳酸钙等一类填料,不仅可以改善PE的性能,同时也具有十分重要的健康环保意义。
2.化学改性
化学改性的方法主要有接枝改性、共聚改性、交联改性、氯化及氯磺化改性和等离子体改性处理等方法。其原理是通过化学反应在PE分子链上引入其他链节和功能基团,由此提高材料的力学性能、耐侯性能、抗老化性能和粘接性能等。
(1)接枝改性 接枝改性是指将具有各种功能的极性单体接枝到PE主链上的一种改性方法。接枝改性后的PE不但保持了其原有特性,同时又增加了其新的功能。常用的接枝单体有丙烯酸(AA)、马来酸酐(MA)、马来酸盐、烯基双酚A醚和活性硅油等。接枝改性的方法主要有溶液法、固相法、熔融法、辐射接枝法、光接枝法等。
(2)共聚改性 共聚改性是指通过共聚反应将其他大分子链或官能团引入到PE分子链中,从而改变PE的基本性能。主要改性品种有乙烯-丙烯共聚物(塑料)、EVA、乙烯-丁烯共聚物、乙烯-其他烯烃(如辛烯POE、环烯烃)共聚物、乙烯-不饱和酯共聚物(EAA、 EMAA 、EEA、EMA、EMMA、EMAH)等。通过共聚反应,可以改变大分子链的柔顺性或使原来的基团带有反应性官能团,可以起到反应性增容剂的作用。
(3)交联改性 交联改性是指在聚合物大分子链间形成了化学共价键以取代原来的范德华力,由此极大地改善了诸如耐热性、耐磨性、弹性形变、耐化学药品性及耐环境应力开裂性等一系列物理化学性能,适于作大型管材、电缆电线以及滚塑制品等。聚乙烯的交联改性方法包括过氧化物交联(化学交联)、高能辐射交联、硅烷接枝交联、紫外光交联。
(4)氯化及氯磺化改性 氯化聚乙烯是聚乙烯分子中的仲碳原子被氯原子
取代后生成的一种高分子氯化物,具有较好的耐候性、耐臭氧性、耐化学药品性、耐寒性、阻燃性和优良的电绝缘性。主要用作聚氯乙烯的改性剂,以改善聚氯乙烯抗冲击性能,氯化聚乙烯本身还可作为电绝缘材料和地面材料。
氯磺化聚乙烯是聚乙烯经过氯化和氯磺化反应而制得的具有高饱和结构的特种弹性材料,属于高性能橡胶品种。其结构饱和,无发色基团存在,涂膜的抗氧性、耐油性、耐候性、耐磨性和保色性能优异,且耐酸碱和化学药品的腐蚀,已广泛应用于石油、化工等行业。
(5)等离子体改性处理 等离子体是由部分电离的导电气体组成,其中包括电子、正离子、负离子,基态的原子或分子、激发态的原子或分子、游离基等类型的活性粒子。
在聚乙烯等高分子材料表面改性中主要利用低温等离子体中的活性粒子轰击材料表面,使材料表面分子的化学键被打开,并与等离子体中的氧、氮等活性自由基结合,在高分子材料表面形成含有氧、氮等极性基团,由于表面增加了大量的极性基团从而能明显地提高材料表面的粘接性、印刷性、染色性等。 1.1.5聚乙烯的应用
聚乙烯是通用塑料中应用最广泛的品种,薄膜是其主要加工产品,其次是片材和涂层、瓶、罐、桶等中空容器及其他各种注射和吹塑制品、管材和电线、电缆的绝缘和护套等。主要用于包装、农业和交通等部门。
1.薄膜
低密度聚乙烯总产量的一半以上经吹塑制成薄膜,这种薄膜有良好的透明性和一定的拉伸强度,广泛用作各种食品、衣物、医药、化肥、工业品的包装材料以及农用薄膜。也可用挤出法加工成复合薄膜用于包装重物。高密度聚乙烯薄膜的强度高、耐低温、防潮,并有良好的印刷性和可加工性。线型低密度聚乙烯的最大用途也是制成薄膜,其强度、韧性均优于低密度聚乙烯,耐刺穿性和刚性也较好,透明性稍优于高密度聚乙烯。此外,还可以在纸、铝箔或其他塑料薄膜上挤出涂布聚乙烯涂层,制成高分子复合材料。
2.中空制品
高密度聚乙烯强度较高,适宜成型中空制品。可用吹塑法制成瓶、桶、罐、槽等容器,或用浇铸法制成槽车罐和贮罐等大型容器。