内容发布更新时间 : 2025/1/23 0:53:48星期一 下面是文章的全部内容请认真阅读。
遵义市2018年高考模拟试题
数学(文史科)
(本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.考试时间120分钟) 参考公式:
如果事件A、B互斥,那么P(A?B)?P(A)?P(B) 如果事件A、B相互独立,那么P(A?B)?P(A)?P(B)
如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的
kkn?k概率Pn(k)?CnP(1?P)
球的体积公式V?43?R,球的表面积公式S?4?R2,其中R表示球的半径 3第Ⅰ卷(选择题共60分)
一、选择题:本大题共12小题,每小题5分,共60分,四个选项只有一项正确 1. 若集合M?{y|y?2?1},N?{x|y?xx?1},则M?N?
A.{y|y?0} B.{y|y?1} C. {y|y?1} D.{y|y?0} 2. 若P(2,?1)为圆(x?1)?y?25的弦AB的中点,则直线AB的方程为 A. 2x?y?3?0
?22B.x?y?3?0 C.x?y?1?0 D.2x?y?5?0
??3. 已知向量a=(1,1),a?c?0,且|a|?|c|,则c可能是 (A)(-1,0)
(B)(1,0)
(C)(1,1)
(D)(-1,1)
???123454. C6?C6?C6?C6?C6的值为
(A)61 (B)62 (C)63
(D)64
5. 在等比数列{an}中,a5,a4,a6成等差数列,则公比q等于
A.1或2
B.-1或-2
2C.1或-2 D.-1或2
6. 已知直线y?2x?m和圆x2?y?1交于不同的两点A和B,以Ox为始边,OA,OB为终边的角分别为?,?,则sin(???)的值为 A.
3344 B. ? C. ? D. 55557. 要得到一个奇函数,只需将函数f(x)?sinx?3cosx的图象
?个单位 6?C.向左平移个单位
6A.向右平移
?个单位 3?D.向左平移个单位
3B.向右平移
28. 实数满足log2x?3?2cos?,则x?2?x?8的值为.
A.6 B.6或-6 C.10 D.不确定
9. 已知正方体ABCD—A1B1C1D1中,点M、N分别是在AB1、BC1(端点除外),且AM=BN,下列四个结论:
①AA1⊥MN;②A1C1//MN;③MN//平面ABCD;④MN、AC为异面直线,其中正确的结论为
A.1个 B.2个 C.3个 D.4个 10. 已知函数f(x)?log2010(x?1),且a>b>c>0,则A.
f(a)f(b)f(c)>> abcf(a)f(b)f(c),,的大小关系为 abc B.
f(a)f(b)f(c)<< abcf(a)f(c)f(b)<< acbC.
f(b)f(a)f(c)>> bacD.
11. 已知函数f?x??cos?x6,集合A??1,2,3,4,5,6,7,8,9?,现从A中任取两个不同的
元素m,n,则f?m??f?n??0的概率为 A.
57719 B. C. D. 121218362x?y2?1的焦点为F1,F2,若点P在椭圆上,且满足12. 已知椭圆C: 42,则称P为“姚明点”。那么下列结论正确的|PO|?|PF1|?||PF2|(其中O为坐标原点)
是
A.椭圆上仅有有限个是“姚明点” B.椭圆上所有的点都是“姚明点” C.椭圆上所有的点都不是“姚明点” D.椭圆上有无穷多个点(但不是所有的点)是
“姚明点”
第Ⅱ卷(非选择题,共90分)
二、填空题:本大题共4个小题,每小题5分,共20分。
13. 已知f(x)?log3x的值域是[-1,1],那么它的反函数的值域是 ; 14. (3x?2y?1)中不含y的项系数是 ;
5
15. 连结球面上两点的线段称为球的弦.半径为4的球的两条弦的长度分别等于27和43 ,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值 ;
16. 函数f(x)?ax3?3x2?3x?10的图像上存在与y轴垂直的切线,则a的取值范围是_________.
三、解答题:本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分10分)
在△ABC中,角A、B、C的对边分别是a、 b 、 c,设向量m?(a,cosB),n?(b,cosA),并且
??m∥n,m≠n
(Ⅰ)判断△ABC的形状;
(Ⅱ)求sinA?sinB的取值范围。
18.(本小题满分12分) 在等比数列?an?中,a4?????220. ,a3?a5?39(I)求数列?an?的通项公式;
(II)若数列?an?的公比大于1,且bn?log3
19.(本小题满分12分)
. 直三棱柱ABC-A1B1C1中,AB=AC=AA1?3a,.BC?2a,D是BC的中点,E是CC1上的点,
an,求数列?bn?的前n项和Sn. 2