内容发布更新时间 : 2025/1/22 20:46:01星期一 下面是文章的全部内容请认真阅读。
第一章 算法初步
本章教材分析
算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.
本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.
在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.
本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章: (1)知识间的联系; (2)数学思想方法; (3)认知规律.
本章教学时间约需12课时,具体分配如下(仅供参考):
1.1.1 算法的概念 1.1.2 程序框图与算法的基本逻辑结构 1.2.1 输入语句、输出语句和赋值语句 1.2.2 条件语句 1.2.3 循环语句 1.3算法案例 本章复习 1.1 算法与程序框图
1.1.1 算法的概念
整体设计
教学分析
算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标
1.正确理解算法的概念,掌握算法的基本特点.
2.通过例题教学,使学生体会设计算法的基本思路.
3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点
教学重点:算法的含义及应用.
教学难点:写出解决一类问题的算法.
1
约1课时 约4课时 约1课时 约1课时 约1课时 约3课时 约1课时 课时安排 1课时
教学过程
导入新课
思路1(情境导入)
一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)
大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?
答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)
算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课 新知探究 提出问题
(1)解二元一次方程组有几种方法? (2)结合教材实例??x?2y??1,(1)总结用加减消元法解二元一次方程组的步骤.
?2x?y?1,(2)?x?2y??1,(1)总结用代入消元法解二元一次方程组的步骤.
2x?y?1,(2)?(3)结合教材实例?(4)请写出解一般二元一次方程组的步骤.
(5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:
(1)代入消元法和加减消元法. (2)回顾二元一次方程组
?x?2y??1,(1)的求解过程,我们可以归纳出以下步骤: ??2x?y?1,(2)第一步,①+②×2,得5x=1.③ 第二步,解③,得x=
1. 53. 5第三步,②-①×2,得5y=3.④ 第四步,解④,得y=
2
1?x?,??5第五步,得到方程组的解为?
?y?3.?5?(3)用代入消元法解二元一次方程组
?x?2y??1,(1)我们可以归纳出以下步骤: ?2x?y?1,(2)?第一步,由①得x=2y-1.③
第二步,把③代入②,得2(2y-1)+y=1.④ 第三步,解④得y=
3.⑤ 531-1=. 55第四步,把⑤代入③,得x=2×
1?x?,??5第五步,得到方程组的解为?
3?y?.?5?(4)对于一般的二元一次方程组??a1x?b1y?c1,(1)
?a2x?b2y?c2,(2) 其中a1b2-a2b1≠0,可以写出类似的求解步骤: 第一步,①×b2-②×b1,得 (a1b2-a2b1)x=b2c1-b1c2.③ 第二步,解③,得x=
b2c1?b1c2.
a1b2?a2b1 第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④ 第四步,解④,得y=
a1c2?a2c1.
a1b2?a2b1b2c1?b1c2?x?,?a1b2?a2b1? 第五步,得到方程组的解为?
?y?a1c2?a2c1.?a1b2?a2b1?(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使
用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.
在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.
(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算
3