【名师一号】2011届高考物理实验一轮复习精品资料:实验15 用多用电表探测黑箱内的电学元件 下载本文

内容发布更新时间 : 2024/12/23 3:33:07星期一 下面是文章的全部内容请认真阅读。

实验十五用多用电表探测黑箱内的电学元件

第一关:基础关展望高考 基 础 知 识 (一)实验目的 1.会使用多用电表;

2.依据测量数据,推测电路结果及二极管的特性. (二)实验原理

(1)多用电表的构成及功能

多用电表可以用来测量电流、电压、电阻等,并且每一种测量都有几个量程,如图甲所示,上半部为表盘,表盘上有电流、电压、电阻等各种量程的刻度;下半部为选择开关,它的四周刻着各种测量项目和量程;另外,还有欧姆表的调零旋钮、机械调零旋钮和测试表笔的插孔.

(2)欧姆挡的工作原理

测电阻是依据闭合电路欧姆定律,内部电路如图乙所示:R为调零电阻,红黑表笔接触,进行欧姆表调零时,表头指针满偏,则有:Ig=E/(Rg+R+r),当红、黑表笔间有未知电阻Rx时有I=E/(Rg+R+r+Rx),故每一个未知电阻都对应一个电流值I,在刻度盘上都有一个偏转角度对应,我们便可在刻度盘对应处,标有Rx的值;当Rx=Rg+R+r时,I=,指针半偏,所以欧姆表内阻等于R中.欧姆表刻度是不均匀的.

(3)二极管的特性是单向导电性.当二极管加上一定的正向电压时,这的电阻值很小,就像一个接通的开关一样;当二极管加上反向电压时,它的电阻值变得很大,就像一个断开的开关一样.

(4)黑箱问题属于根据所给结论,进行逆向思维,推断出已知条件的问题.解决电学黑箱问题的基本思路是:利用所学的电路基础知识,分析题设所给各种数据条件,判断出黑箱内各电学元器件的连接方式,然后设计出符合条件要求的电路来.

(三)实验器材 Z&xx&k 多用电表、黑箱、导线、干电池、晶体二极管、电阻、开关、小灯泡. (四)实验步骤 1.练习使用多用电表

(1)观察多用电表外形,认识选择开关的测量项目及量程.

(2)检查多用电表的指针是否停在表盘刻度左端的零刻度位置,若不指零,则可用小螺丝刀进行机械调零.

(3)将红、黑表笔分别插入、!+、\、!-、\插孔.

(4)将选择开关置于直流电压2.5 V挡,测1.5 V干电池的电压.

(5)将选择开关置于交流电压250 V挡,测220 V交流电源的电压.(一定要注意安全,手指不能接触红黑表笔前端的金属杆)

(6)将选择开关置于直流电流100 mA挡,测量1.5 V干电池与200 Ω电阻串联回路的电流.

(7)将选择开关置于欧姆表的、!×1、\挡,短接红、,黑表笔,调整调零旋钮,使指针指向欧姆表刻度的零位置.

(8)将两表笔分别接触几欧、,几十欧的定值电阻两端,读出欧姆表指示的电阻数值,并与标准值比较,然后断开表笔.

(9)将选择开关置于欧姆挡的、!×100、\挡,重新进行欧姆表调零,然后测量几百欧、,几千欧的电阻,并将测量值与标准值进行比较.

(10)选择适当的量程,测定灯丝、,电炉丝和人体的电阻. 2.探索黑箱内的电学元件

(1)用直流电压挡测量A、B、C三点间有无电压,注意分析有电压、无电压分别说明什么? (2)用欧姆挡测量无电压的两点间正、反接的电阻,看电阻是否不变.

(3)用欧姆挡进一步测量两点正、反接电阻不等的两点的电阻,并记住红、黑表笔分别接哪一点.

(4)根据测量结果对黑箱内元件进行判断,画出结构示意图.

实验完毕,将表笔从插孔中拔出,并将选择开关置于、!OFF、\挡或交流电压最高挡. 第二关:技法关解读高考 解 题 技 法 一、实验注意事项 技法讲解

(1)测量电阻时,待测电阻要与别的元件和电源断开,且不要用手接触表笔. (2)合理选择欧姆挡的量程,使指针尽可能指在表盘中央位置附近,使读数比较准确. (3)使用完后应拔出表笔,不要将选择开关置于欧姆挡,以防电池漏电.

(4)用多用电表探索黑箱内的电学元件时,多用电表的两表笔要与接点保持稳定接触. (5)用多用电表探索黑箱内的电学元件实验时,首先要用多用电表直流电压挡确定黑箱内有无电池.如果箱内有电池,则绝对不能用多用电表的欧姆挡去测各接线柱间的电阻,否则容易烧坏多用电表.

典例剖析

例1在使用多用电表的欧姆挡时,下列现象与事实相符的有()

A.如果待测电阻不跟别的元件断开,测量值一定偏大

B.测量电阻器的电阻时,若红\\,黑表笔在电表上插错,会增大测量误差

C.用多用电表测量“200 V 100 W”字样的白炽灯泡的电阻时测量值大于484 Ω D.正确测量某二极管时,发现阻值约为几十欧,则此时黑表笔接的一定是二极管的正极 解析:测量二极管电阻只有几十欧,一定是导通,故D对,其他选项都错. 答案:D

二、用多用电表测黑箱内元件问题的思路 技法讲解

由上图作出初步判断后,再根据各待测两端的测量数据进行逻辑判断,判断哪一种情况是两个元件串联的数据,最终可以确定元件的位置.

典例剖析

例2如图所示,盒子内装有导线、一个电源和几个阻值相同的电阻组成的电路,1、2、3、4为接线柱,用电压表测得U12=5.0 V,U34=3.0 V,U13=2.0 V,U24=0.如使盒子内所用电阻最少,请在图中画出盒内的元件和电路.

解析:由题给的数据可以看出,U12=U13+U34+U24,这一电压关系正好符合串联电路中总电压与分电压之间的关系,因此我们可以设想1、3,3、4,2、4这三部分的电阻为串联关系.由串联电路中电压分配与电阻成正比的规律,可以确定R13、R34=,而2、4之间因U24=0,所以R24=0,可知2、4间为一根导线,由于R13、R34=,故可初步设想盒内电路如图甲所示,由于要求电阻个数最少,故最后确定为图乙、丙两种情况.

第三关:训练关笑对高考 随 堂 训 练

1.在如图所示电路的三根导线中,有一根是断的,电源、电阻器R1和R2及另外两根导线都是好的,为了查出断导线,某学生想先将多用电表的红表笔直接接在电源的正极a,再将黑表笔分别连接在电阻器R1的b端,R2的c端,并观察多用电表指针的示数,在下列选挡中符合操作规程的是()

A.直流10 V挡 B.直流0.5 A挡

C.直流2.5 V挡 学科 D.欧姆挡