高斯混合模型GMM实现 matlab 下载本文

内容发布更新时间 : 2025/1/10 9:17:19星期一 下面是文章的全部内容请认真阅读。

高斯混合模型GMM实现 matlab (1)以下matlab代码实现了高斯混合模型:

function [Alpha, Mu, Sigma] = GMM_EM(Data, Alpha0, Mu0, Sigma0) %% EM 迭代停止条件 loglik_threshold = 1e-10; %% 初始化参数

[dim, N] = size(Data); M = size(Mu0,2);

loglik_old = -realmax; nbStep = 0;

Mu = Mu0;

Sigma = Sigma0; Alpha = Alpha0; Epsilon = 0.0001;

while (nbStep < 1200) nbStep = nbStep+1;

%% E-步骤 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=1:M

% PDF of each point

Pxi(:,i) = GaussPDF(Data, Mu(:,i), Sigma(:,:,i)); end

% 计算后验概率 beta(i|x)

Pix_tmp = repmat(Alpha,[N 1]).*Pxi;

Pix = Pix_tmp ./ (repmat(sum(Pix_tmp,2),[1 M])+realmin); Beta = sum(Pix);

%% M-步骤 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=1:M

% 更新权值

Alpha(i) = Beta(i) / N;

% 更新均值

Mu(:,i) = Data*Pix(:,i) / Beta(i);

% 更新方差

Data_tmp1 = Data - repmat(Mu(:,i),1,N);

Sigma(:,:,i) = (repmat(Pix(:,i)',dim, 1) .* Data_tmp1*Data_tmp1') / Beta(i); %% Add a tiny variance to avoid numerical instability Sigma(:,:,i) = Sigma(:,:,i) + 1E-5.*diag(ones(dim,1)); end

% %% Stopping criterion 1 %%%%%%%%%%%%%%%%%%%% % for i=1:M

%Compute the new probability p(x|i)

% Pxi(:,i) = GaussPDF(Data, Mu(:,i), Sigma(i)); % end

%Compute the log likelihood % F = Pxi*Alpha';

% F(find(F

%Stop the process depending on the increase of the log likelihood % if abs((loglik/loglik_old)-1) < loglik_threshold % break; % end

% loglik_old = loglik;

%% Stopping criterion 2 %%%%%%%%%%%%%%%%%%%% v = [sum(abs(Mu - Mu0)), abs(Alpha - Alpha0)]; s = abs(Sigma-Sigma0); v2 = 0; for i=1:M

v2 = v2 + det(s(:,:,i)); end

if ((sum(v) + v2) < Epsilon) break;

end

Mu0 = Mu;

Sigma0 = Sigma; Alpha0 = Alpha; end nbStep

(2)以下代码根据高斯分布函数计算每组数据的概率密度,被GMM_EM函数所调用

function prob = GaussPDF(Data, Mu, Sigma)

%

% 根据高斯分布函数计算每组数据的概率密度 Probability Density Function (PDF) % 输入 ----------------------------------------------------------------- % o Data: D x N ,N个D维数据

% o Mu: D x 1 ,M个Gauss模型的中心初始值

% o Sigma: M x M ,每个Gauss模型的方差(假设每个方差矩阵都是对角阵, % 即一个数和单位矩阵的乘积)

% Outputs ---------------------------------------------------------------- % o prob: 1 x N array representing the probabilities for the % N datapoints. [dim,N] = size(Data);

Data = Data' - repmat(Mu',N,1);

prob = sum((Data*inv(Sigma)).*Data, 2);

prob = exp(-0.5*prob) / sqrt((2*pi)^dim * (abs(det(Sigma))+realmin));

(3)以下是演示代码demo1.m

% 高斯混合模型参数估计示例 (基于 EM 算法) % 2010 年 11 月 9 日

[data, mu, var, weight] = CreateSample(M, dim, N); // 生成测试数据 [Alpha, Mu, Sigma] = GMM_EM(Data, Priors, Mu, Sigma)

(4)以下是测试数据生成函数,为demo1.m所调用:

function [data, mu, var, weight] = CreateSample(M, dim, N)

% 生成实验样本集,由M组正态分布的数据构成

% % GMM模型的原理就是仅根据数据估计参数:每组正态分布的均值、方差,

% 以及每个正态分布函数在GMM的权重alpha。 % 在本函数中,这些参数均为随机生成, %

% 输入

% M : 高斯函数个数

% dim : 数据维数 % N : 数据总个数 % 返回值

% data : dim-by-N, 每列为一个数据

% miu : dim-by-M, 每组样本的均值,由本函数随机生成 % var : 1-by-M, 均方差,由本函数随机生成

% weight: 1-by-M, 每组的权值,由本函数随机生成 % ----------------------------------------------------