内容发布更新时间 : 2024/12/23 5:41:50星期一 下面是文章的全部内容请认真阅读。
1.根据有效数字运算规则,计算下列算式:
(1)19.469+1.537-0.0386+2.54 (2) 3.6?0.032320.59?2.12345 45.00?(24.?00?1.32)?0.1245(3)
1.0000?1000
(4) pH=0.06,求
[H]=?
解: a. 原式=19.47+1.54-0.04+2.54=23.51 b. 原式=3.6×0.032×21×2.1=5.1
+
45.00?22.68?0.1245=0.12711.000?1000 c. 原式=
d. [H]=10
+
-0.06
=0.87( mol/L )
2c(V1?V2)Mx5?x??100%m 2. 返滴定法测定试样中某组分含量时,按下式计算:
已知V1=(25.00±0.02)mL,V2=(5.00±0.02)mL,m =(0.2000±0.0002)g,设浓度c及摩尔质量Mx的误差可忽略不计,求分析结果的极值相对误差。
?x解:xEVEm0.040.0002??Vm0.2=0.003=0.3% = 20max=
A?Cx?m,A为测量值,C为空白值,m为试样质3.设某痕量组分按下式计算分析结果:
量。已知sA=sC=0.1,sm=0.001,A=8.0,C=1.0,m=1.0,求sx。
22222s(A?C)sxsmsA?sCsm0.12?0.120.0012??2??2???4.09?10?422222(A?C)m(A?C)m(8.0?1.0)1.0解:x
2x? 且
8.0?1.0?7.01.0
?42s?4.09?10?7.0?0.14
故x4. 测定某试样的含氮量,六次平行测定的结果为20.48%,20.55%,20.58%,20.60%,20.53%,20.50%。
a. 计算这组数据的平均值、中位数、全距、平均偏差、标准偏差和相对标准偏差; b.若此试样是标准试样,含氮量为20.45%,计算测定结果的绝对误差和相对误差。
16x??xini?1 解:a. 平均值
1 =6(20.48%+20.55%+20.58%+20.60%+20.53%+20.50%)
=20.54% 中位数 20.54%
全距 20.60%-20.48%=0.12% 平均偏差
nd??x?xii?1n =0.04%
n2xi?x? 标准偏差
i?1s?
n?1 =0.05%
相对标准偏差
=0.2% sRSD??100% xb. 若此试样含氮量为20.45% 则绝对误差 =20.54%-Ea?x?20.45T%=0.09%
??0.09EEr?a??1000%?0.4 .45T相对误差 =
5. 反复称量一个质量为 1.0000g的物体,若标准偏差为0.4mg,那么测得值为1.0000?1.0008g的概率为多
少? 解:由??0.4mg ??1.0000g
1.0000?1.00001.0008?1.0000?u?0.00040.0004 故有
即0?u?2
查表得 P=47.73%
6. 按正态分布x落在区间(??1.0?,??0.5?)的概率是多少? 解:u1=1.0, P1=0.3413 u2=0.5, P2=0.1915
正态分布x落在区间(??1.0?,??0.5?)的概率是P1+ P2=0.3413+0.1915=53.28% 7.要使在置信度为95%时平均值的置信区间不超过±s,问至少应平行测定几次? 解:
??x?t?sx?x?t?sn 查表,得:
t2.57??1.049?1n6t2.45f?6时,t?2.45,故??0.926?1n7 故至少应平行测定5次
f?5时,t?2.57,故8.若采用已经确定标准偏差(?)为0.041%的分析氯化物的方法,重复三次测定某含氯试样,测得结果的平均值为21.46%,计算: a. 90%置信水平时,平均值的置信区间; b. 95%置信水平时,平均值的置信区间。 解:
a. 90%置信水平时,
f?2时,t0.90,2?2.92,??21.46?t?n?21.46%?0.07%
b. 95%置信水平时,
f?2时,t0.95,2?4.30,??21.46?t?n?21.46%?0.10%
9. 测定黄铁矿中硫的质量分数,六次测定结果分别为30.48%, 30.42%, 30.59%, 30.51%, 30.56%, 30.49%,计算置信水平95%时总体平均值的置信区间。
16x??xini?1 解:
?30.48%?30.42%?30.59%?30.51%?30.56%?30.49%?30.51%6
n?1 =0.06% 置信度为95%时:
t0.05,5?2.57,??x?t?,f?s0.06%?30.51%?2.57??30.51%?0.06%n6
s??(x?x)ii?16210. 设分析某铁矿石中铁的质量分数时,所得结果符合正态分布,已知测定结果平均值为52.43%,标准偏差 为0.06%,试证明下列结论:重复测定20次,有19次测定结果落在52.32%至52.54%范围内。
解:
?
查表,f=20时,P≥99%
t???x?n?0.11?20?8.200.06
∴20次测定中概率在20×99%=19.8,大于19次。 11.下列两组实验数据的精密度有无显著性差异(置信度90%)? A:9.56,9.49,9.62,9.51,9.58,9.63 B:9.33,9.51,9.49,9.51,9.56,9.40
16x??xi?9.57ni?1解:a.
s?
?(x?x)ii?162n?1?5.71%2?4 故s?32.6?10
16x??xi?9.47ni?1 b.
s?
?(x?x)ii?162n?1?8.51%2?4 故s?72.4?10
2sb72.4?10?4F?2??2.221?4F?5.05sa32.6?10 所以 查表得表>2.221
无显著性差异。
12.铁矿石标准试样中铁质量分数的标准值为54.46%,某分析人员分析四次,平均值为
x??%,问在置信度为95%时,分析结果是否存在系统误差? 54.26,标准偏差为0.05解:t检验法:t=sn=8>t0.05,3 有显著性差异。
13.用两种不同分析方法对矿石中铁的质量分数进行分析,得到两组数据如下: ? s n 方法1 15.34% 0.10% 11 方法2 15.43% 0.12% 11
a.置信度为90%时,两组数据的标准偏差是否存在显著性差异?
b.在置信度分别为90%,95%及99%时,两组分析结果的平均值是否存在显著性差异? 解:(a)
s122s2=0.0010,
2
=0.0012
2
2S2F?2S1=1.44 所以两组数据的标准偏差无显著性差异。 ?d 2(b)由S=10 2i 得,?d2221=0.01,?d22=0.012 0.01?0.012n1?n2?2? s==11?11?2=0.0332=3.32% |X2?X1|n1n2|15.34?15.43|11?11sn1?n23.3211?11? t==查表得:当置信度为90%时,查表得:当置信度为95%时,查表得:当置信度为99%时, ?d??d21=0.063 t0.10,20=1.72>0.063 =2.09>0.063 =2.84>0.063 t0.05,20t0.01,20所以两组分析结果的平均值不存在显著性差异。 14.某分析人员提出一个测定氯的方法,他分析了一个标准试样得到下面数据:四次测定结果平均值为16.72%,标准偏差为0.08%,标准试样的值是16.62%,问置信水平为95%时所得结果与标准值的差异是否显著?对新方法作一评价。 x??解:t检验法:t=sn=2.5<t0.05,3 无显著性差异,新的方法可以采用。 -1 15.实验室有两瓶NaCl试剂,标签上未标明出厂批号,为了判断这两瓶试剂含Cl的质量分数是否有显著性差异,某人用莫尔法对它们进行测定, ?Cl结果如下: ?