内容发布更新时间 : 2024/12/25 13:01:13星期一 下面是文章的全部内容请认真阅读。
2019年广州市普通高中毕业班综合测试(二)
文科数学
2019.4 本试卷共6页,23小题,满分150分。考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用2B 铅笔在答题卡的相应位置填涂考生号,并将试卷类型(B)填涂在答题卡相应位置上。 2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答 案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在 试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指 定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案; 不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A={x∈N|0 2.已知复数z=m(3+i)-(2+i)在复平面内对应的点在第三象限,则实数m的取值范围是 A. B. C. D. 3.某公司生产A,B,C三种不同型号的轿车,产量之比依次为2:3:4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n= A. 96 B. 72 C. 48 D. 36 4.执行如图所示的程序框图,则输出z的值是 A. 21 B. 22 C. 23 D. 24 5.从某班5名学生(其中男生3人,女生2人)中任选3人参加学校组织的社会实践活动,则所选3人中至少有1名女生的概率为 A. B. C. D. 6.函数y=的部分图像如图所示,则函数的解析式为 A.B. C. D. 7.设等比数列{an}的前n项和为Sn,则下列等式中一定成立的是 A. Sn+S2n=S3n B. S22n=SnS3n C. S22n=Sn+S2n- S3n D. S2n + S22n=Sn (S2n+S3n) 8.已知双曲线 拘渐近线方程为5x±3y=0,则此双曲线的离心率为 A. B. C. D. 9.一个圆锥的体积为,当这个圆锥的侧面积最小时,其母线与底面所成角的正切值为 A. B. C. D. 10.设a≥b≥c,且1是一元二次方程ax+ bx+c=0的一个实根,则的取值范围为 2 A.[-2,0] B.C.D. 11.在三棱锥P-ABC中,PA=PB=PC=2,AB=AC=I,BC=,则该三棱锥的外接球的表面积为 A. B. C. D. 12.己知函数A. B. C. 与 D. 的图像上存在关于x轴对称的点,则实数a的取值范围为 二、填空题:本题共4小题,每小题5分,共20分. 13.已知向量 ,向量 ,则 = 14. 《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的 2 是较小的两份之和,则最小一份的量为 . 15.若函数f(x)=x-x+l+ alnx在(0,+∞)上单调递增,则实数a的取值范围是 . 16.己知点P在直线x+2y-l=0上,点Q在直线x+2y+3=O E,PQ的中点为M(x0,y0),且-1≤y0 -x0≤7,则 的取值范围是____. 三、解答题:共70分,解答应写出文字说明、证明过程和演算步骤,第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分. 17. (本小题满分12分) △ABC中角A,B,C的对边分别为a,b,c,已知 (1)求的值; (2)若c=2,求△ABC的面积. 18. (本小题满分12分) 如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,∠APD=90°, 且PA=PD,AD=PB.