内容发布更新时间 : 2024/12/22 13:04:03星期一 下面是文章的全部内容请认真阅读。
原因,将输出电流(IIL)。此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2的触发输入(P1.1/T2EX),具体如表3.1所示。在flash编程和校验时,P1口接收低8位地址字节。
P2口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动4个TTL 逻辑电平。对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX @DPTR)时,P2 口送出高八位地址。在这种应用中,P2 口使用很强的内部上拉发送1。在使用8位地址(如MOVX @RI)访问外部数据存储器时,P2口输出P2锁存器的内容。在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。
P3口:P3 口是一个有内部上拉电阻的8 位双向I/O 口,P3 输出缓冲器能驱动4个TTL 逻辑电平。对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。P3口亦作为AT89S52特殊功能(第二功能)使用,如表3.2所示。在flash编程和校验时,P3口也接收一些控制信号。
表3.2 P3口第二功能
RST:复位输入。晶振工作时,RST脚持续2个机器周期高电平将使单片机复位。看门狗计时完成后,RST 脚输出96个晶振周期的高电平。特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。DISRTO默认状态下,复位高电平有效。
ALE/PROG:地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8 位地址的输出脉冲。在flash编程时,此引脚(PROG)也用作编程输入脉冲。在
一般情况下,ALE 以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。然而,特别强调,在每次访问外部数据存储器时,ALE脉冲将会跳过。如果需要,通过将地址为8EH的SFR的第0位置“1”,ALE操作将无效。这一位置 “1”,ALE 仅在执行MOVX 或MOVC指令时有效。否则,ALE 将被微弱拉高。这个ALE 使能标志位(地址为8EH的SFR的第0位)的设置对微控制器处于外部执行模式下无效。
PSEN:外部程序存储器选通信号(PSEN)是外部程序存储器选通信号。当AT89S52从外部程序存储器执行外部代码时,PSEN在每个机器周期被激活两次,而在访问外部数据存储器时,PSEN将不被激活。
EA/VPP:访问外部程序存储器控制信号。为使能从0000H 到FFFFH的外部程序存储器读取指令,EA必须接GND.为了执行内部程序指令,EA应该接VCC。在flash编程期间,EA也接收12V的VPP电压。
XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。 XTAL2:振荡器反相放大器的输出端。[7]
3.1.3单片机的最小系统
单片机的最小系统是指运用最少的元件使单片机运行的系统,一般包括一下的几个部分:晶振电路、复位电路、电源电路和串口电路。
晶振是电路中常用用的时钟元件,全称是叫晶体震荡器,在单片机系统里晶振的作用非常大,他结合单片机内部的电路,产生单片机所必须的时钟频率,单片机的一切指令的执行都是建立在这个基础上的,晶振的提供的时钟频率越高,那单片机的运行速度也就越快。[2]
晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。
而晶振由于会与单片机的XTAL1与XTAL2脚构成的振荡电路中会产生谐波,从而降低电路时钟振荡器的稳定性,所以一般会匹配两个30pf的电容来消减谐波对于电路稳定性的影响。
晶振电路如图3.2所示:,XTAL1 和XTAL2 分别是放大器的输入、输出端
图3.2 晶振电路
系统复位有两种方式:上电复位与手动复位。[3]
上电复位:上电瞬间,电容充电电流最大,电容相当于短路,RST端为高电平,自动复位;电容两端的电压达到电源电压时,电容充电电流为零,电容相当于开路,RST端为低电平,程序正常运行。
手动复位:首先经过上电复位,当按下按键时,RST直接与VCC相连,为
图3.3复位电路
高电平形成复位,同时电解电容被短路放电;按键松开时,VCC对电容充电,
充电电流在电阻上,RST依然为高电平,仍然是复位,充电完成后,电容相当于开路,RST为低电平,正常工作。[5]
一般采用手动复位,其对于上电复位方式更加方便,不需要切断电源便可对系统进行复位,复位电路如图3.3所示
3.2温度检测模块
3.2.1 DS18B20的主要功能及特点
DS18B20温度传感器是美国达拉斯(DALLAS)半导体公司推出的应用单总线技术的数字温度传感器。该器件将半导体温敏器件、A/D转换器、存储器等做在一个很小的集成电路芯片上。它具有微型化、低功耗、高性能、抗干扰能力强、易配微处理器等优点,可直接将温度转化成串行数字信号供处理器处理。[8]
DS18B20具有以下特性:
独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线。 每个设备都有一个唯一的64位序列码,存储在ROM中。 简单的多点分布式测温应用。 在使用中不需要任何外围元件。
可以从数据线供电。电源范围为3.0V~ 5.5V。 测温范围 -55℃~+125℃。
在—10℃~+85℃间,测温分辨率为0.5℃。 温度计分辨率可由用户选择,9至12位之间。 在750毫秒内将温度转换为12位字。 用户可自定义非易失性报警的设置。
报警搜索命令定义和存储的设备,其温度不收程序限制(温度报警状态)。 采用8引脚SOP和3引脚TO- 92封装。 软件与DS1822兼容。 其引脚如图3.4所示:
图3.4 DS18B20引脚图
引脚说明: GND - 接地
DQ - 输入/输出数据 VDD - 电源电压 NC - 无连接
DS18B20的极限使用条件 各引脚对地电压: -0.5V~+0.6V 工作温度: -55℃~125℃ 储存温度: -55℃~+125℃ 焊接温度参见J-STD-020A的规格
*以上指出的器件在进行正常焊接操作时所需要的环境条件,可能还有部分为能说明但是在操作规格中已经暗示器件可正常运行的环境。长期工作在极限条件下可能会影响器件的可靠性。
3.2.2DS18B20的内部结构
DS18B20的内部存储资源分为8个字节的ROM,9个字节的高速暂存器RAM,3个字节的EEPROM。如图3.5所示。