2019广州中考数学圆专题复习(精炼版) 下载本文

内容发布更新时间 : 2025/1/6 2:06:55星期一 下面是文章的全部内容请认真阅读。

2019广州中考数学圆专题复习

(精炼版)

一、圆的概念

集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:

1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;

(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫

中垂线);

3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;

4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;

5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系

1、点在圆内 ? d?r ? 点C在圆内; 2、点在圆上 ? d?r ? 点B在圆上; 3、点在圆外 ? d?r ? 点A在圆外;

三、直线与圆的位置关系

1、直线与圆相离 ? d?r ? 无交点; 2、直线与圆相切 ? d?r ? 有一个交点; 3、直线与圆相交 ? d?r ? 有两个交点;

ArBdCdO

rdd=rrd

四、圆与圆的位置关系

外离(图1)? 无交点 ? d?R?r; 外切(图2)? 有一个交点 ? d?R?r; 相交(图3)? 有两个交点 ? R?r?d?R?r; 内切(图4)? 有一个交点 ? d?R?r; 内含(图5)? 无交点 ? d?R?r;

dR图1rRdr图2dR图3r

d

五、垂径定理

图4RrdrR图5垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:

①AB是直径 ②AB?CD ③CE?DE ④ 弧BC?弧BD ⑤ 弧AC?弧AD 中任意2个条件推出其他3个结论。

A

CBOED

推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O中,∵AB∥CD ∴弧AC?弧BD

六、圆心角定理

圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①?AOB??DOE;②AB?DE;

③OC?OF;④ 弧BA?弧BD

七、圆周角定理

1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 即:∵?AOB和?ACB是弧AB所对的圆心角和圆周角 ∴?AOB?2?ACB 2、圆周角定理的推论:

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;

即:在⊙O中,∵?C、?D都是所对的圆周角 ∴?C??D

推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙O中,∵AB是直径 或∵?C?90? ∴?C?90? ∴AB是直径

推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

BOACAODCEFCOADBBCBOADCBOACBOA