内容发布更新时间 : 2025/1/7 4:51:40星期一 下面是文章的全部内容请认真阅读。
二次函数知识点、考点、典型试题集锦(带详细解析答案)
一、中考要求:
1.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.
2.能用表格、表达式、图象表示变量之间的二次函数关系,发展有条理的思考和语言表达能力;能根据具体问题,选取适当的方法表示变量之间的二次函数关系.
3.会作二次函数的图象,并能根据图象对二次函数的性质进行分析,逐步积累研究函数性质的经验.
4.能根据二次函数的表达式确定二次函数的开口方向,对称轴和顶点坐标.
5.理解一元二次方程与二次函数的关系,并能利用二次函数的图象求一元二次方程的近似根.
6.能利用二次函数解决实际问题,能对变量的变化趋势进行预测.
二、中考卷研究
(一)中考对知识点的考查:
2009、2010年部分省市课标中考涉及的知识点如下表: 序号 1 2 3 4 所考知识点 二次函数的图象和性质 二次函数的图象与系数的关系 二次函数解析式的求法 二次函数解决实际问题 比率 2.5~3% 6% 2.5~10.5% 8~10% (二)中考热点:
二次函数知识是每年中考的重点知识,是每卷必考的主要内容,本章主要考查二次函数的概念、图象、性质及应用,这些知识是考查学生综合能力,解决实际问题的能力.因此函数的实际应用是中考的热点,和几何、方程所组成的综合题是中考的热点问题. 三、中考命题趋势及复习对策
二次函数是数学中最重要的内容之一,题量约占全部试题的10%~15%,分值约占总分的10%~15%,题型既有低档的填空题和选择题,又有中档的解答题,更有大量的综合题,近几年中考试卷中还出现了设计新颖、贴近生活、反映时代特征的阅读理解题、开放探索题、函数应用题,这部分试题包括了初中代数的所有数学思想和方法,全面地考查学生的计算能力,逻辑思维能力,空间想象能力和创造能力。
针对中考命题趋势,在复习时应首先理解二次函数的概念,掌握其性质和图象,还应注重其应用以及二次函数与几何图形的联系,此外对各种函数的综合应用还应多加练习. ★★★(I)考点突破★★★
考点1:二次函数的图象和性质 一、考点讲解:
21.二次函数的定义:形如y?ax?bx?c(a≠0,a,b,c为常数)的函数为二次函数. 2.二次函数的图象及性质:
⑴ 二次函数y=ax2 (a≠0)的图象是一条抛物线,其顶点是原点,对称轴是y轴;当a>0时,抛物线开口向上,顶点是最低点;当a<0时,抛物线开口向下,顶点是最高点;a越小,抛物线开口越大.y=a(x-h)2+k的对称轴是x=h,顶点坐标是(h,k)。
24ac?b2bby?ax?bx?c⑵ 二次函数的图象是一条抛物线.顶点为(-,),对称轴x=-;
2a4a2a当a>0时,抛物线开口向上,图象有最低点,且x>-2a,y随x的增大而增大,x<-2a,y随x的增大而减小;当a<0时,抛物线开口向下,图象有最高点,且x>-2a,y随x的增大而减小,x<-2a,y随x的增大而增大.
注意:分析二次函数增减性时,一定要以对称轴为分界线。首先要看所要分析的点是否
是在对称轴同侧还是异侧,然后再根据具体情况分析其大小情况。 解题小诀窍:二次函数上两点坐标为(x1,y),(x2,y),即两点纵坐标相等,则其对称轴为直线x?x1?x2。
24ac?b2bb⑶ 当a>0时,当x=-2a时,函数有最小值4a;当a<0时,当 x=-2a时,函数有4ac?b2。
最大值4a
bbbb3.图象的平移:将二次函数y=ax2 (a≠0)的图象进行平移,可得到y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.
⑴ 将y=ax2的图象向上(c>0)或向下(c< 0)平移|c|个单位,即可得到y=ax2+c的图象.其顶点是(0,c),形状、对称轴、开口方向与抛物线y=ax2相同. ⑵ 将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,即可得到y=a(x-h)2的图象.其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.
⑶ 将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x-h)2 +k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.
注意:二次函数y=ax2 与y=-ax2 的图像关于x轴对称。平移的简记口诀是“上加下减,左加右减”。
一、 经典考题剖析:
【考题1】.抛物线y=?4(x+2)2+5的对称轴是______
【考题2】函数y= x2-4的图象与y 轴的交点坐标是( ) A.(2,0) B.(-2,0) C.(0,4) D.(0,-4)
【考题3】在平面直角坐标系内,如果将抛物线y?2x向右平移2个单位,向下平移3个单位,平移后二次函数的关系式是() A.y?2(x?2)?3 B.y?2(x?2)?3 C.y?2(x?2)?3 D.y?2(x?2)?3
22222答案:B。
【考题4】(2009、贵阳)已知抛物线y?3(x?4)2?3 的部分图象(如图1-2-1),图象再次与x轴相交时的坐标是( ) A.(5,0) B.(6,0) C.(7,0) D.(8,0)
解:C 点拨:由y?3(x?4)2?3,可知其对称轴为x=4,而图象与x轴已交于(1,0),则与x轴的另一交点为(7,0)。参考解题小诀窍。
2y?ax?bx?c 【考题5】(深圳)二次函数
11图像如图所示,若点A(1,y1),B(2,y2)是它的图像上两点,则y1与y2的大小关系是()
x=-3
y O A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定
答案:C。点A,B均在对称轴右侧。
三、针对性训练:( 分钟) (答案: )
1.已知直线y=x与二次函数y=ax2 -2x-1的图象的一个交点 M的横标为1,则a的值为( )
A、2 B、1 C、3 D、 4 k2.已知反比例函数y= 的图象在每个象限内y随x的增大而增大,则二次函数y=2kx2 -
xx+k2的图象大致为图1-2-3中的( )