一次函数经典题型+习题(精华,含答案) 下载本文

内容发布更新时间 : 2025/1/24 3:10:34星期一 下面是文章的全部内容请认真阅读。

.

一次函数

题型一、点的坐标

方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;

若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;

1、 若点A(m,n)在第二象限,则点(|m|,-n)在第____象限;

2、 若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为

______________________; 3、 已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_______,b=_________;

若A,B关于y轴对称,则a=_______,b=__________;若若A,B关于原点对称,则a=_______,b=_________;

4、 若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第

______象限。

题型二、关于点的距离的问题

方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示;

若AB∥x轴,则A(xA,0),B(xB,0)的距离为xA?xB; 若AB∥y轴,则A(0,yA),B(0,yB)的距离为yA?yB;

点B(2,-2)到x轴的距离是_________;到y轴的距离是____________; 1、 点C(0,-5)到x轴的距离是_________;到y轴的距离是____________;

到原点的距离是____________;

2、 点D(a,b)到x轴的距离是_________;到y轴的距离是____________;到

原点的距离是____________;

.....

3、 已知点P(3,0),Q(-2,0),则PQ=__________,已知点M??0,1??,N?1??2???0,?2??,则MQ=________; E?2,?1?,F?2,?8?,则EF两点之间的距离是__________;已知点G(2,-3)、H(3,4),则G、H两点之间的距离是_________; 4、 两点(3,-4)、(5,a)间的距离是2,则a的值为__________; 5、 已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且∠ACB=90°,

则C点坐标为___________.

题型三、一次函数与正比例函数的识别

方法:若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数,特别的,当b=0

时,一次函数就成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。 ☆A与B成正比例?A=kB(k≠0) 1、当k_____________时,y??k?3?x2??2x?3是一次函数; 2、当m_____________时,y??m?3?x2m?1?4x?5是一次函数; 3、当m_____________时,y??m?4?x2m?1?4x?5是一次函数; 题型四、函数图像及其性质

☆一次函数y=kx+b(k≠0)中k、b的意义:

k(称为斜率)表示直线y=kx+b(k≠0) 的倾斜程度;

b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的 ,也表示直线在y轴上的 。

☆同一平面内,不重合的两直线 y=k1x+b1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系:

当 时,两直线平行。

.

☆特殊直线方程:

X轴 : 直线 Y轴 : 直线

与X轴平行的直线 与Y轴平行的直线 2、直线y=kx+b的图像经过A(3,4)和点B(2,7), 一、三象限角平分线 二、四象限角平分线 当 时,两直线相交。

1、对于函数y=5x+6,y的值随x值的减小而___________。 2、对于函数y?12?23x, y的值随x值的________而增大。 3、一次函数 y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是__________。 4、直线y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是_________。 5、已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第_______象限。

6、无论m为何值,直线y=x+2m与直线y=-x+4的交点不可能在第______象限。 7、已知一次函数 (1)当m取何值时,y随x的增大而减小? (2)当m取何值时,函数的图象过原点?

题型五、待定系数法求解析式

方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。

☆ 已知是直线或一次函数可以设y=kx+b(k≠0);

☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。 1、若函数y=3x+b经过点(2,-6),求函数的解析式。

.....

3、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。

题型六、平移

方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b即可。

直线y=kx+b向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

1. 直线y=5x-3向左平移2个单位得到直线 。 2. 直线y=-x-2向右平移2个单位得到直线 3. 直线y=

12x向右平移2个单位得到直线 4. 直线y=?32x?2向左平移2个单位得到直线 5. 直线y=2x+1向上平移4个单位得到直线 6. 直线y=-3x+5向下平移6个单位得到直线 7. 直线y?13x向上平移1个单位,再向右平移1个单位得到直线 。 .

8. 直线y??34x?1向下平移2个单位,再向左平移1个单位得到直线________。

9. 过点(2,-3)且平行于直线y=2x的直线是____ _____。 10. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.

题型七、交点问题及直线围成的面积问题

方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;

复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);

往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高; 1、 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。

2、 已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB (1) 求两个函数的解析式;(2)求△AOB的面积; 4 A3 2 1

01234.....

B

6. 如图,已知点A(2,4),B(-2,2),C(4,0),求△ABC的面积。

【一次函数习题】

一、填空题 1.已知函数y?1?2x3x?1,x=__________时,y的值时0,x=______时,y的值是

1;x=_______时,函数没有意义. 2.已知y?x2?53?x,当x=2时,y=_________.

3.在函数y?x?2x?3中,自变量x的取值范围是__________.

4.一次函数y=kx+b中,k、b都是 ,且k ,自变量x的取值范围是 ,当 k ,b 时它是正比例函数.