内容发布更新时间 : 2024/12/23 18:37:42星期一 下面是文章的全部内容请认真阅读。
2.解:(1) f?x??x?ax
4313,
2411?34x?a3故f??x??x?ax?
32333x若a?0,则f??x??0,因此f?x?在?0,???上是增函数. 若a?0,则由f??x??0得x??因此f?x?的单调递增区间是??a, 4a??a??,???,单调递减区间是?0,??.
4??4?? (2)若a??4,则f??x??0(x??1,8?),
因此f?x?在?1,8?上是增函数.
那么f?x?在x??1,8?上的最小值是f?1??a?1,最大值是f?8??2a?16; 若a??32,则f??x??0(x??1,8?),
因此f?x?在?1,8?上是减函数.
那么f?x?在x??1,8?上的最小值是f?8??2a?16,最大值是f?1??a?1. 若?32?a??4,则 x 1 a??1,??? 4??? ?0 a 4?a???,8? ?4?+ ↗ 8 f??x? f?x? f?1??a?1 ↘ 极小值 f?8??2a?16 所以f?x?在x??1,8?上的最小值是f??当f?1??a?1?f?8??2a?16,
?a?33a??a?,
4?4?4即?32?a??15时,最大值是a?1;当?15?a??4时,最大值是2a?16. 2.解:(Ⅰ)?f(x)?t(x?t)?t?t?1(x?R,t?0),
23?当x??t时,f(x)取最小值f(?t)??t3?t?1,
即h(t)??t?t?1?t?0?.
33 (Ⅱ)令g(t)?h(t)?(?2t?m)??t?3t?1?m,
2由g?(t)??3t?3?0得t?1,t??1(不合题意,舍去).
当t变化时g?(t),g(t)的变化情况如下表:
t g?(t) g(t)
(0,1) 1 (1,2) ? 递增 0 极大1?m 值? 递减 ?g(t)在(0,2)内有最大值g(1)?1?m.
h(t)??2t?m在(0,2)内恒成立等价于g(t)?0在(0,2)内恒成立,
即等价于1?m?0, 所以m的取值范围为m?1. 不等式
1.解:(I)设函数y?g(x)图象上任意一点P(x,y),
由已知点P关于y轴对称点P'(?x,y)一定在函数y?f(x)图象上, 代入得y?2x2?4x,所以g(x)?2x?4x (II)
2f(x)?g(x)?|x?1|
22
?2x2?x?1?2x2?1?x或? ?2x?|x?1|???x?1?0?x?1?0
1??x????1?x?或???2 x?1???x?1??1?x?1 222?1?xx?1?1,得?0即?0. 2.解:(1)由
x?1x?1x?1 解得?1?x?1.
?A?x?1?x?1.
由x?(2?a)x?2a?0,得(x?2)(x?a)?0. ①若a?2,则B?(2,a); ②若a?2,则B??;
③若a?2,则B?(a,2). (2)要使A?B,则a?2. 并且a??1.
所以,当a??1时,A?B.
2??