内容发布更新时间 : 2024/12/26 15:11:52星期一 下面是文章的全部内容请认真阅读。
可编辑版
入学考试题库(共180题)
1.函数、极限和连续(53题)
1.1函数(8题) 1.1.1函数定义域 1.函数y?lgxx?arcsin的定义域是( )。A x?23A. [?3,0)C. [?3,0)(2,3]; B. [?3,3];
(1,3]; D. [?2,0)(1,2).
131x2.如果函数f(x)的定义域是[?2,],则f()的定义域是( )。D
11,0)?[3,??);
2211C. [?,0)?(0,3]; D. (??,?]?[3,??).
22A. [?,3]; B. [?3. 如果函数f(x)的定义域是[?2,2],则f(log2x)的定义域是( )。B A. [?1111,0)(0,4]; B. [,4]; C. [?,0)(0,2] ; D. [,2]. 44224.如果函数f(x)的定义域是[?2,2],则f(log3x)的定义域是( ).D
A. [?,0)?(0,3]; B. [,3]; C. [?,0)?(0,9] ; D. [,9].
5.如果f(x)的定义域是[0,1],则f(arcsinx)的定义域是( )。C
A. [0,1]; B. [0,1.1.2函数关系
131319191?]; C. [0,] ; D. [0,?]. 222?x21,?x?6.设f???x???,则f(x)?( ).A ????1?x2x2A.
2x?12x?1x?1x?1; B. ; C. ; D. .
2x?1x?1x?12x?13x7.函数y?x的反函数y?( )。B
3?1A.log3(xxx1?x); B. log3(); C. log3(); D. log3(). 1?x1?xx?1x Word完美格式
可编辑版
sin2x8.如果f(cosx)?,则f(x)?( ).C
cos2x1?x21?x21?x21?x2A.2; B. 2; C. 2; D. 2.
2x?12x?12x?12x?1
1.2极限(37题) 1.2.1数列的极限
1?2?3??nn?)?( ).B
n???n211A.1; B. ; C. ; D. ?.
321?2?3??n?( ).A 10.极限lim2n??2n1111A.; B. ?; C. ; D. ?
55449.极限lim(11.极限lim??11??n??1?22?3??1???( ).C
n(n?1)?A.-1; B. 0; C. 1; D. ?.
1111??2??(?1)nn222?( ).A 12.极限limn???1111??2??n3334499A.; B. ?; C. ; D. ?
99441.2.2函数的极限
x2?x13.极限lim?( ).C
x??xA.
11; B. ?; C. 1; D. ?1. 2214.极限limx?0x?1?1?( ).A x11; B. ?; C. 2; D. ?2. 22A.
15.极限limx?03x?1?1?( ).B x Word完美格式
可编辑版
A. ?3311 ; B. ; C. ? ; D. . 222216.极限limx?12x?1?1.C ?( )
x?1A. -2 ; B. 0 ; C. 1 ; D. 2 .
17.极限limx?42x?1?3?( ).B
x?24433; B. ; C. ?; D. . 334422A.?18.极限lim(x?1?x?1)? ( ).D
x??A.?; B. 2; C. 1; D. 0.
x2?5x?6? ( ).D 19.极限limx?2x?2A.?; B. 0; C. 1; D. -1.
x3?1? ( ).A 20.极限lim2x?2x?5x?3A.?7711; B. ; C. ; D. ?.
33333x2?1? ( ).C 21.极限lim2x??2x?5x?4A.?; B.
22.极限lim233; C. ; D. . 324sinx?( ).B
x??x1?( ).B xA.?1; B. 0; C. 1; D. 2.
23.极限limxsinx?0A.?1; B. 0; C. 1; D. 2.
x?24.极限limx?00sintdtt?1x2?( ).B
A.
1111; B. ?; C. ; D. ?.
3322 Word完美格式