粗粒化技术处理含油废水试验研究 下载本文

内容发布更新时间 : 2024/12/23 2:01:02星期一 下面是文章的全部内容请认真阅读。

粗粒化技术处理含油废水试验研究 (申请工学硕士学位论文)

粗粒化技术处理含油废水试验研究

张小艳 培养单位:土木工程与建筑学院 学科专业:市政工程 研 究 生:张小艳

指导老师:张少辉 副教授

李孟 教授

2007年12月

武汉理工大学 分类号 UDC

密 级

学校代码 10497

位 论 文

中 文

题 目 粗粒化技术处理含油废水试验研究 英 文 Research on Treatment of Oily Wastewater by 题 目 Coalescence Technology

研究生姓名 张小艳 姓名 张少辉 职称 副教授 指导教师

姓名 李 孟 职称 教授

单位名称 土木工程与建筑学院 邮编 430070

申请学位级别 硕 士 学科专业名称 市 政 工 程 论文提交日期 2007年11月 论文答辩日期 2007年12月 学位授予单位 武汉理工大学 学位授予日期 答辩委员会主席 评阅人

2007年11月

摘 要

目前,我国大部分油田已进入石油开采的中期和后期,原油含水率达70~80%,有的油田甚至高达90%。油水分离产生大量的含油污水,如不经处理直接排放,会对环境造成污染危害,严重时将威胁人民的生命安全,造成经济损失。因此,开发适合我国油田实际情况、高效经济的污水处理及回用技术已成为油田污水处理站改造和新建的重要问题。利用粗粒化方法对含油废水进行一级处理,可以大大降低含油量,再进行二级处理和深度处理,能使油分及各项指标达到低渗透油藏对回注水水质的要求。

本课题通过粗粒化材料的确定、反应器的选型的对比实验,发现疏油性陶瓷填料的粗粒化性能明显优于其他材料,并且陶瓷填料堆积式粗粒化反应器的除油率高于斜板式反应器,且有效周期也要明显较长。根据实验结果,探讨分析了聚结反应机理及其动力学,得出当聚结机理为润湿聚结和碰撞聚结同时作用时,聚结效率可得到大幅度的提高的结论,并提出聚结填料的表面性质和空间构成是影响聚结效率的重要因素。

为了更清楚的了解粗粒化技术,本课题进行了影响因素的试验。结果表明,1~3mm的填料粒径可得到较好的粗粒化效果;碱性、高温有利于聚结;流向对除油效果的影响不大,但上向流更有利于粗粒化;在流速为6m/h时,流速的增加,加大了润湿聚结的作用,可得到较好的粗粒化效果。

结合试验确定的参数,设计了内循环连续流粗粒化反应器。通过实验室试验和油田现场试验得出,该反应器在选用1.6~3mm的疏油性陶瓷滤料,上升流速为6m/h时,油份去除率高达80%,且持续12个小时以上。另外,将整个填料层反冲洗干净的时间约为20min,单独反冲洗有效粗粒化填料层的时间为5~8min。

与传统的粗粒化装置相比,这种装置具有截污量大,周期长,反洗水耗小等特点。该装置处理过的油田水大大降低了含油量,减轻了后续工艺的负荷,能够满足低渗透油藏对回注水水质提出的更高要求。

关键词:油田废水;碰撞聚结;粗粒化;内循环连续流

Abstract

At present, most oilfields in china have entered into mid-late oil exploitation stage. Crude oil moisture content was generally 70~80%, even reach 90%. Large amount of oily wastewater was produced from oil-water phase separation process. Discharge of untreated wastewater would put hazardous risk to environment and public health. Therefore, development of highly effective economical treatment and reusing technologies has become an important problem of the modification and establishment of oily wastewater processing station. The per-treatment of oily wastewater by coalescence can reduce the oil content greatly, and then secondary and deep treatment can make oil content and other indexes reach the standard of water quality for reinjection in the low permeability oil reservoir.

Through the comparison experiment on the selection of coalescence material and reactor type, this paper discovered the efficiency of coalescence of ceramic packing is better than others significantly, and the oil removal efficiency of heap type reactor is higher than swash plate type as well as effective particle velocity period. The mechanism and reaction dynamics of coalescence were explored through the experimental results. Results showed that as the collision coalescence and the wetting coalescence mechanism were coexistence and the efficiency of coalescence was enhanced remarkably. The surface property and spatial constitution form of the fillers had important effect on the oil removal efficiency of coalescence.

In order to understand coalescence technology more clearly, the experiment of influence factors was carried out. The results showed that there will be better efficiency of coalescence at particle size of 1~3mm; alkaline condition and high temperature favored coalescence reaction; flow direction has little effect, but up-flow direction can accelerate coalescence; when the velocity of the flow at 6m/h, its increasing enhanced the efficiency of wetting coalescence, which results to the better efficiency of coalescence.

Combined with the parameters determined by experiment, internal recycling continuous flow reactor for coalescence was designed. The oil removal efficiency of this reactor can be high up to 80% for over 12 hours, when particle size of ceramic packing at 1.6~3mm and the velocity of the up-flow at 6m/h. Otherwise, it takes about 20 minutes to make the total packing layer clean by backwashing, and 5~8 minutes to backwash the effective packing layer for coalescence.

Compared with traditional coalescence equipments, this equipment has advantages of larger capacity of pollutant removal, longer period, and no medicine needed. The oil content in oilfield water treated by the equipment was greatly decreased, which relieved the loading of the sequenced processes, and the quality of the effluent water satisfied the higher requirement of injected water in exploiting low-permeability reservoir.

Keywords: oilfield wastewater; coalescence of collision; internal recycling

continuous flow; coalescence;

目 录

第一章 绪 论 ............................................................................................................. 7

1.1 含油废水对环境的危害.................................................................................. 7 1.2 含油废水的主要来源及油污水性质.............................................................. 8

1.2.1含油废水的主要来源............................................................................. 8 1.2.2含油废水的物理化学性质................................................................... 11 1.3 含油废水的处理方法.................................................................................... 12

1.3.1物理法................................................................................................... 12 1.3.2物理化学法........................................................................................... 14 1.3.3化学法................................................................................................... 15 1.3.4生物化学法........................................................................................... 16 1.2.5电化学法............................................................................................... 18 1.3.6其他处理方法....................................................................................... 19 1.4 粗粒化法处理含油废水的研究与应用........................................................ 21

1.4.1 粗粒化技术的发展概况...................................................................... 21 1.4.2粗粒化技术存在问题........................................................................... 26 1.5 本文研究的背景及主要内容........................................................................ 26

1.5.1课题产生的背景................................................................................... 26 1.5.2本文研究的主要内容........................................................................... 27

第二章 乳状液聚结的理论基础 ............................................................................... 29

2.1 乳状液的定义................................................................................................ 29 2.2 乳状液的类型................................................................................................ 29 2.3 乳状液的物理性质和评价方法.................................................................... 29

2.3.1分散相粒径分布................................................................................... 29 2.3.2 流变性.................................................................................................. 30 2.3.3稳定性................................................................................................... 30 2.4乳状液稳定机理............................................................................................. 31

2.4.1分层....................................................................................................... 32 2.4.2聚集(絮凝)和聚结 ................................................................................ 32 2.5 粗粒化除油机理及其动力学解释................................................................ 32

2.5.1 粗粒化除油机理.................................................................................. 32 2.5.2 粗粒化除油机理的动力学解释.......................................................... 34

第三章 粗粒化形式选择试验及其机理探讨 ........................................................... 41 3.1 实验部分 .............................................................................................................. 41