逻辑学基础教程课后练习题答案汇总 下载本文

内容发布更新时间 : 2025/1/22 13:55:41星期一 下面是文章的全部内容请认真阅读。

式,但反之则不然,即不能用下面的公式蕴涵上面的公式。

(二)用自然推理的方法证明下述推理的有效性。 1.①(A∧B)→(A→D∧E),②(A∧B∧C)。所以,D∨E。

证明:⑴ (A∧B)→(A→D∧E) 已知

⑵ A∧B∧C 已知 ⑶ A∧B ⑵,联言推理的分解式 ⑷ A ⑶,联言推理的分解式 ⑸ A→D∧E ⑴、⑶,充分条件推理的肯定前件式 ⑹ D∧E ⑷、⑸,充分条件推理的肯定前件式 ⑺ D ⑹,联言推理的分解式 ⑻ D∨E ⑺,析取附加式

2.①E→F∧﹁G,②F∨G→H,③E。所以,H。

证明:⑴ E→F∧﹁G 已知

⑵ F∨G→H 已知 ⑶ E 已知 ⑷ F∧﹁G ⑴、⑶,充分条件推理的肯定前件式 ⑸ F ⑷,联言推理的分解式 ⑹ F∨G ⑸,析取附加律 ⑺ H ⑵,⑹,充分条件推理的肯定前件式

3.①M→N,②N→O,③ (M→O)→(N→P),④(M→P)→Q。所以,Q。

证明:⑴ M→N 已知

⑵ N→O 已知 ⑶ (M→O)→(N→P) 已知 ⑷ (M→P)→Q 已知 ⑸ M→O ⑴、⑵,条件三段论 ⑹ N→P ⑶、⑸,充分条件推理的肯定前件式 ⑺ M→P ⑴、⑹,条件三段论 ⑻ Q ⑷、⑺,充分条件推理的肯定前件式

4.①A→B,②B→C,③ C→D,④(A→D)→(B→A),⑤﹁A。所以,﹁B。

证明:⑴ A→B 已知

⑵ B→C 已知 ⑶ C→D 已知 ⑷ (A→D)→(B→A) 已知 ⑸ ﹁A 已知 ⑹ A→C ⑴、⑵,条件三段论 ⑺ A→D ⑶、⑹,条件三段论 ⑻ B→A ⑷、⑺,充分条件推理的肯定前件式 ⑼ ﹁B ⑸、⑻,充分条件推理的否定后件式

5.A∨B→(C∨D→E)。所以,A→(C∧D→E)。

证明:⑴ A∨B→(C∨D→E) 已知

⑵ A 假设 ⑶ C∧D 假设 ⑷ A∨B ⑵,析取附加律 ⑸ C∨D→E ⑴、⑷,充分条件推理的肯定前件式

41

⑹ C ⑶,联言推理的分解式 ⑺ C∨D ⑹,析取附加律 ⑻ E ⑸、⑺,充分条件推理的肯定前件式 ⑼ C∧D→E ⑶、⑻,→引入 ⑽ A→(C∧D→E) ⑵、⑼,→引入

6.①A∨B→C∧D,②D∨E→F。所以,A→F。

证明:⑴ A∨B→C∧D 已知

⑵ D∨E→F 已知 ⑶ A 假设 ⑷ A∨B ⑶,析取附加律 ⑸ C∧D ⑴、⑷,充分条件推理的肯定前件式 ⑹ D ⑶,联言推理的分解式 ⑺ D∨E ⑹,析取附加律 ⑻ F ⑵、⑺,充分条件推理的肯定前件式 ⑼ A→F ⑶、⑻,→引入

7.①A∧B→C,②(A→C)→D,③﹁B∨E。所以,B→D∧E

证明:⑴ A∧B→C 已知

⑵ (A→C)→D 已知 ⑶ ﹁B∨E 已知 ⑷ B 假设 ⑸ E ⑶、⑷,选言推理的否定肯定式 ⑹ ﹁(A∧B)∨C ⑴,等值命题 ⑺ ﹁A∨﹁B∨C ⑹,德摩根定律 ⑻ (﹁A∨C)→D ⑵,等值命题 ⑼ (﹁A∨﹁B∨C)→D ⑻,条件附加律 ⑽ D ⑺、⑼,充分条件推理的肯定前件式 ⑾ D∧E ⑸、⑽,联言推理的组合式 ⑿ B→D∧E ⑷、⑾,→引入

8.①A∨(B∧C),②(A→D)∧(D→C)。所以,C。

证明:⑴ A∨(B∧C) 已知

⑵ (A→D)∧(D→C) 已知 ⑶ A→C ⑵,条件三段论 ⑷ A∨(B∧C)→C ⑶,条件附加律 ⑸ C ⑴、⑷,充分条件推理的肯定前件式

第七章 谓词逻辑初步

一、填空题

1.关系词项“包庇”在直接关系推理中表现为(非对称)性,在间接关系推理中表现为(非

42

传递)性。

2.如果关系R是反传递性的,则由aRb和bRc为前提,可推出(﹁(aRc))。

3.在概念外延间的全异、真包含、交叉关系中,属于传递性关系的是(真包含关系),属于反对称性关系的是(真包含关系)。

4.在概念外延间的全同、真包含于、交叉、矛盾关系中,属于反对称关系的是(真包含于关系),属于反传递关系的是(真包含于关系、矛盾关系)。 5.已知关系R是反对称的、传递的,由aRb真可得知(bRa假);由aRb真且bRc真可得知(aRc真)。

二、单项选择题 1.B 2.A 3.B 4.C 5.C 6.C 7.A

解析:由题意可知,甲+乙=丙+丁,甲+丁>乙+丙,甲+丙<乙。经过运算可得,丁>

乙>甲>丙。

8.C

三、双项选择题 1.“人事变动不等于政策变动,所以政策变动不等于人事变动。”该推理是( BE )

A.有效的反对称性关系推理 B.有效的对称性关系推理 C.无效的反对称关系推理 D.无效的对称性关系推理 E.有效的纯关系推理 2.“甲了解乙,乙了解丙,所以甲了解丙。”这个推理是( CE )

A.有效的传统关系推理 B.有效的反传统关系推理 C.误把非传统关系当作传递关系 D.无效的反传统关系推理 E.无效的纯关系推理

3.下列既是反对称性又是传递性的关系是( CD )

A.援助 B.矛盾 C.在??左边 D.真包含于 E.交叉 4.“柏拉图和亚里士多德是古希腊哲学家”这个命题是( CE )

A.关系命题 B.直言命题 C.复合命题 D.全称命题 E.联言命题

注意,直言命题通常被分析到词项,因此直言命题通常是指简单命题。 5.在概念外延间的关系中,不具有传递性的是( CD )

A.同一关系 B.真包含关系 C.交叉关系 D.全异关系 E.真包含于关系

43

四、应用分析题

(一)指出下列语词或语句中哪些是个体词、谓词、量词和命题? 1.数8。

答:“8”是个体词,“数”是谓词。 2.x是深红色的。

答:x是个体词,“是深红色的”是谓词。 注意,(1)这里的x其实是个体变项。下同。

(2)命题都有真假,而“x是深红色的”没有真假,因为这里的x实际上是一个

空位,即该语句其实是“( )是深红色的”,它是一个开语句,不能表达通常所谓的命题。下同。

3.x+y=z

答:x、y和z是个体词,+和=是谓词。 4.所有的x。

答:“所有”是量词,x是个体词。 5.将要出任校长的人。

答:“将要出任校长的人”是谓词。因为通常说,例如,“张三是将要出任校长的人”。 6.小黄不爱小李,但也不讨厌小李。

答:“小黄”和“小李”为个体词,“爱”和“讨厌”是谓词,“小黄不爱小李”、“(小黄)

不讨厌小李”和“小黄不爱小李,但也不讨厌小李”都是命题。

7.至少有数x。

答:x是个体词,“至少有”是量词,“数”是谓词。 8.几乎所有的人。

答:“几乎所有”是量词,“人”是个体词。 (二)把下列命题表达为谓词公式 1.有的粉笔是红色的。(F:是粉笔;G:是红色的)

解:?x(Fx∧Gx)

2.所有的学生都没有缺席。(F:是学生;G:缺席)

解:?x(Fx→﹁Gx)

3.有的学生既不是上海人也不是江西人。(F:是学生;G:是上海人;H:是江西人)

解:?x(Fx∧﹁Gx∧﹁Hx) 4.小陈不接受任何意见。(a:小陈;F:是意见;R(x, y):x接受y)

解:?x(Fx→﹁R(a, x))

5.有的服务员认识每一位来自北京的客人。(F:是服务员;G:来自北京;H:是客人;R(x, y):x认识y)

解:?x(Fx∧?y((Gy∧Hy)→R(x, y)) 6.并非所有的儿童都喜欢喝某种饮料。(F:是儿童;G:是饮料;R(x, y):x喜欢y)

解:﹁?x(Fx→?y(Gy∧R(x, y))) 7.凡是小陈喜欢的书我都喜欢。(a:小陈;b:我;F:是书;R(x, y):x喜欢y)

解:?x((Fx∧R(a, x))→R(b, x))

(三)指出下列公式中哪些是约束变项,哪些是自由变项,并指出量词的辖域。 1.?x(Px∧Qx)→?xPx∧Qx

解:第一个x是约束变项,辖域为(Px∧Qx)。第二个x也是约束变项,辖域为Px。第

三个x是自由变项。

2.?x(Px∧?xQx)∨?x(Rx→Qx)

44

解:第一个x是约束变项,辖域为(Px∧?xQx)。第二个x也是约束变项,辖域为Qx。

第三个x也是约束的,辖域为(Rx→Qx)。

3.?x(Px?Qx∧?xRx)∧?xRx∧Sx

解:第一个x是约束变项,辖域为(Px?Qx∧?xRx)。第二个x是约束变项,辖域为Rx。

第三个x为自由变项。

4.?x(Px→?yR(x, y))

解:x为约束变项,辖域为(Px→?yR(x, y))。y为约束变项,辖域为R(x, y)。 5.?x?y(R(x, y)→﹁Gx)∧?zR(x, z)

解:x为约束变项,辖域为(R(x, y)→﹁Gx)。y为约束变项,辖域为(R(x, y)→﹁Gx)。z

为约束变项,辖域为R(x, z)。

6.?x?y(P(x, y)∧Q(y, z))∧?xP(x, y)

解:第一个x为约束变项,辖域为P(x, y)∧Q(y, z)。第一个y约束变项,辖域为P(x, y)∧Q(y,

z)。第二个x为约束变项,辖域为P(x, y)。第二个y为自由变项。

(四)把下列推理形式表达为谓词逻辑的蕴涵式 1.有的S是P,所以有的P不是S。

解:?x(Sx∧Px)→?x(Px∧﹁Sx)

2.所有M不是P,所有S是M,所以有的S不是P。

解:(?x(Mx→﹁Px)∧?x(Sx→Mx))→?x(Sx∧﹁Px) 3.没有P是M,凡S是M,所以凡S不是P。

解:(?x(Px→﹁Mx)∧?x(Sx→Mx))→?x(Sx→﹁Px) 4.所有M是P,所有M是S,所以有S是P。

解:?x(Mx→Px)∧?x(Mx→Sx)→?x(Sx∧Px)

(五)分析下列命题,指出哪些是直言命题,哪些是关系命题。 1.人民利益高于一切。 2.事实胜于雄辩。

3.普及工作和提高工作是紧密相连的。 4.普及工作和提高工作都是要进行的。 5.命题甲和命题乙是矛盾的。

6.命题甲和命题乙都是全称肯定命题。

答:第4和第6是直言命题,第1、2、3和第5是关系命题。 (六)下列各混合关系三段论的形式是否有效?为什么?

1.所有固体都能为有的液体溶解,有的金属是固体,所以有的金属能为有的液体溶解。

答:有效。

2.一切负数都不比一切正整数大,零不是负数,所以零不比一切正整数大。

答:无效。因为它的直言命题不是肯定命题。

3.每人都同意有些建议,有些建议是十分宝贵的,所以每人都同意有些十分宝贵的建议。

答:无效。因为它违反媒介向必须至少周延一次的规则。

4.有些甲班同学没有参加书法小组,小吴参加书法小组,所以小吴不是甲班同学。

答:无效。因为它违反前提中不周延的项在结论中也不得周延的规则。 (七)把下列关系命题表达为谓词公式 1.珠穆朗玛峰比所有山都高。

解:设M表示山,a表示珠穆朗玛峰,H(x, y)表示x比y高,则 ?x(Mx→H(a, x))

2.有些甲班同学的外语成绩比所有乙班同学的外语成绩差。

45