2017-2018人教版七年级数学下册全册导学案教案 下载本文

内容发布更新时间 : 2024/12/22 23:19:46星期一 下面是文章的全部内容请认真阅读。

65、方程mx?2y=3x+4是关于x、y的二元一次方程,则m的值范围是( ) A.m≠0 B.m≠? 2 C.m≠3 D.m≠4 7、已知??x?1是方程3x-my=1的一个解,则m=__________。

?y??38、已知方程

xy??1,若x==6,则y=_____;若y=0,则x=_____;当x=____时,y=4. 34?x?0?x?3?x?6;; 满足方程x-3y=3的是_______________;满足方程3x-10y=8???y??1?y?0?y?1x?3y?3?的解是________________。

3x?10y?8?9、已知下列三对数:?的是__________;方程组?【达标测评】

(一)、精心选一选

1.下列方程组中,不是二元一次方程组的是( ) A.??x?1,

y?2?3.?B.??x?y?1,?x?y?1,?y?x, C.? D.?

x?y?0.xy?0.x?2y?1.???2.已知x,y的值:①?( )

A.①

?x?2,?x?3,?x??3,?x?6,②?③?④?其中,是二元一次方程2的解的是x?y?4?y?2;?y?2;?y??2;?y?6.C.③

D.④

B.②

?x??3,3.若方程6有一解?则k的值等于( ) kx?2y?8y?2?A.B.

1 6D.

2 3D. 4.已知一个二元一次方程组的解是??x??1,则这个方程组是( )

y??2?5?2,x?y?1,?x?y??3?x?y??3,?2x?y,?A.? B.?C.? D.?3 6?xy?2.?x?2y?1.?y?x??3.??2x?y??4.(二)、细心填一填

1.买12支铅笔和5本练习本,其中铅笔每支x元,练习本每本x元,共需用4.9元.①列出关于x,y的二元一次方程为_____;②若再买同样的铅笔6支和同样的练习本2本,价钱是2.2元,列出关于x,y的二元一次方程为_____;③若铅笔每支0.2元,则练习本每本_____元. 2.在二元一次方程2中,当x?5时,_____. x?3y?473

3.已知??x??2,40是二元一次方程2的一个解,则b?_____. x?6y?b?107?y?5(三)、耐心做一做

1、已知二元一次方程2x-3y=-15.

⑴用含y的式子表示x; ⑵用含x的式子表示y.

x?3y?1?2、已知4(y-3)=0,求x+y的值。

2

3、若?

?x?a是方程2x+y=2的解,求8a+4b-3的值。

?y?b课题:8.2二元一次方程组的解法(1)

【学习目标】

会运用代入消元法解二元一次方程组.

【学习重、难点】

1、会用代入法解二元一次方程组。 2、灵活运用代入法的技巧.

【自主学习】 一、基本概念

1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。

74

2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。

3、代入消元法的步骤:代入消元法的第一步是:将其中一个方程中的某个未知数用____的式子表示出来;第二步是:用这个式子代入____,从而消去一个未知数,化二元一次方程组为一元一次方程.

【合作探究】

1、将方程5x-6y=12变形:若用含y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。

?y?x?32、用代人法解方程组?①②,把____代人____,可以消去未知数______,方程变为:

2x?3y?7?3、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。

x?1ax?by?7??4、若?的解,则a=______,b=_______。 是方程组?y??2ax?by??1??3x?y?5ax?2y?4??5、已知方程组?的解也是方程组?的解,则a=_______,

4x?7y?13x-by?5??b=________ ,3a+2b=___________。

6、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________ 。 7、用代入法解下列方程组:

3x?y?7?x?3?x?2?3y?⑴? ⑵? ⑶?

y?x?52x?3y5x?2y?8???

【展示提升】

1. 若∣m+n-5∣+(2m+3n-5)2=0,求(m+n)2的值

2.已知2x

2m-3n-7

-3y

m+3n+6

=8是关于x,y的二元一次方程,求n2m

75

【达标测评】

1、方程组?2x-y?11x?2y?1的解是( )

A.??x?0 B.?x?7?x?3?x??7?y?0??y?3 C.??y?7 D.??y??3

2、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。 3、用代入法解下列方程组

?2⑴??y??3x ⑵??2x?3y?5 ?2xx?8y?22?4x?y?3

⑶??3x?y?5 ⑷??5x?3y?13?0?8x?3y?2?0?4x?5y?8?0

⑸??x?y?8?2x?3y?1 ⑹??5x?2(x?y)??1??y?1?4?x?2

3

(1)??x?2?2(y?1),?2(x?2)?(y?1)?5;

4、如果(5a-7b+3)2+3a?b?5=0,求a与b的值。

5、若方程组??4x?y?5?3x?y?9?ax?by??1与?有公共的解,求a,b.

?3ax?4by?186、当k=______时,方程组??4x?3y?1?kx?(k?1)y?3的解中x与y的值相等。 76