内容发布更新时间 : 2025/1/11 9:38:14星期一 下面是文章的全部内容请认真阅读。
第五篇 数列及其应用 专题5.02 等差数列及其前n项和
【考试要求】 1.理解等差数列的概念;
2.掌握等差数列的通项公式与前n项和公式;
3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题; 4.体会等差数列与一次函数的关系. 【知识梳理】 1.等差数列的概念
(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列. 数学语言表达式:an+1-an=d(n∈N*,d为常数).
a+b
(2)若a,A,b成等差数列,则A叫做a,b的等差中项,且A=.
22.等差数列的通项公式与前n项和公式
(1)若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d. (2)前n项和公式:Sn=na1+3.等差数列的性质
(1)通项公式的推广:an=am+(n-m)d(n,m∈N*).
(2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an.
(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列. (4)若Sn为等差数列{an}的前n项和,则数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.
?Sn?
(5)若Sn为等差数列{an}的前n项和,则数列?n?也为等差数列.
??
n(n-1)dn(a1+an)
=. 22
【微点提醒】
1.已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等差数列,且公差为p. 2.在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.
3.等差数列{an}的单调性:当d>0时,{an}是递增数列;当d<0时,{an}是递减数列;当d=0时,{an}是常数列.
4.数列{an}是等差数列?Sn=An2+Bn(A,B为常数). 【疑误辨析】
1.判断下列结论正误(在括号内打“√”或“×”)
(1)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an+an+2.( )
1
(2)等差数列{an}的单调性是由公差d决定的.( )
(3)数列{an}为等差数列的充要条件是其通项公式为n的一次函数.( ) (4)等差数列的前n项和公式是常数项为0的二次函数.( )
【教材衍化】
2.(必修5P46A2改编)设数列{an}是等差数列,其前n项和为Sn,若a6=2且S5=30,则S8等于( ) A.31
3.(必修5P68A8改编)在等差数列{an}中,若a3+a4+a5+a6+a7=450,则a2+a8=________.
【真题体验】
4.(2018·全国Ⅰ卷)记Sn为等差数列{an}的前n项和.若3S3=S2+S4,a1=2,则a5=( ) A.-12
5.(2019·上海黄浦区模拟)已知等差数列{an}中,a2=1,前5项和S5=-15,则数列{an}的公差为( ) A.-3
6.(2019·苏北四市联考)在等差数列{an}中,已知a3+a8>0,且S9<0,则S1,S2,…,S9中最小的是______.
2
B.32 C.33 D.34
B.-10 C.10 D.12
5
B.-
2
C.-2 D.-4
【考点聚焦】
考点一 等差数列基本量的运算
【例1】 (1)(一题多解)(2017·全国Ⅰ卷)记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( ) A.1
B.2
C.4
D.8
(2)(2019·潍坊检测)设等差数列{an}的前n项和为Sn,S11=22,a4=-12,若am=30,则m=( ) A.9
【规律方法】
1.等差数列的通项公式及前n项和公式共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想来解决问题.
2.数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.
【训练1】 (1)等差数列log3(2x),log3(3x),log3(4x+2),…的第四项等于( ) A.3 B.4 C.log318 D.log324
(2)(一题多解)设等差数列{an}的前n项和为Sn,S3=6,S4=12,则S6=________.
考点二 等差数列的判定与证明
1【例2】 (经典母题)若数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=.
2
B.10
C.11
D.15
3