内容发布更新时间 : 2024/11/19 17:32:14星期一 下面是文章的全部内容请认真阅读。
第一部分 函数图象中点的存在性问题
1.1 因动点产生的相似三角形问题
例1 2013年上海市中考第24题
如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)连结OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.
图1
例2 2012年苏州市中考第29题
121bx?(b?1)x?(b是实数且b>2)与x轴的正半轴分别交于点A、B(点444A位于点B是左侧),与y轴的正半轴交于点C.
(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.
如图1,已知抛物线y?
例3 2012年黄冈市中考模拟第25题
如图1,已知抛物线的方程C1:y??图1 1 B、C,与y轴交于点E,(x?2)(x?m) (m>0)与x轴交于点m且点B在点C的左侧.
(1)若抛物线C1过点M(2, 2),求实数m的值; (2)在(1)的条件下,求△BCE的面积;
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标; (4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
图1
例4 2010年义乌市中考第24题
如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3). (1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
图1 图2
例5 2009年临沂市中考第26题
如图,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点. (1)求此抛物线的解析式;
(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.
,
图1 图 例6 2008年苏州市中考第29题
1.2 因动点产生的等腰三角形问题
例1 2013年上海市虹口区中考模拟第25题
如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点
E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.
(1)求ED、EC的长;
(2)若BP=2,求CQ的长;
(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.
图1 备用图
例2 2012年扬州市中考第27题
如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴. (1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
图1 例3 2012年临沂市中考第26题
如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.
(1)求点B的坐标;
(2)求经过A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.
图1 4如图1,已知一次函数y=-x+7与正比例函数y?x的图象交于点A,且与x轴交于点B. 3(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.
例4 2011年盐城市中考第28题